| Upload Date | November 27 2025 08:22 AM |
| Views | 7 |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | ASUS System Product Name |
| Motherboard | ASUSTeK COMPUTER INC. ROG CROSSHAIR X670E HERO |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | AMD Ryzen 9 7950X3D |
| Topology | 1 Processor, 16 Cores, 32 Threads |
| Identifier | AuthenticAMD Family 25 Model 97 Stepping 2 |
| Base Frequency | 4.20 GHz |
| Cluster 1 | 16 Cores |
| L1 Instruction Cache | 32.0 KB x 16 |
| L1 Data Cache | 32.0 KB x 16 |
| L2 Cache | 1.00 MB x 16 |
| L3 Cache | 96.0 MB x 2 |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Inference Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | AMD Radeon RX 9070 XT |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (F32)
|
100% |
14588
2.73 KIPS |
|
|
Image Classification (F16)
|
100% |
15438
2.89 KIPS |
|
|
Image Classification (I8)
|
100% |
13764
2.58 KIPS |
|
|
Image Segmentation (F32)
|
100% |
13212
220.7 IPS |
|
|
Image Segmentation (F16)
|
100% |
20294
338.9 IPS |
|
|
Image Segmentation (I8)
|
98% |
18156
303.2 IPS |
|
|
Pose Estimation (F32)
|
100% |
181577
219.9 IPS |
|
|
Pose Estimation (F16)
|
100% |
209544
253.7 IPS |
|
|
Pose Estimation (I8)
|
100% |
193798
234.7 IPS |
|
|
Object Detection (F32)
|
100% |
7073
528.0 IPS |
|
|
Object Detection (F16)
|
100% |
7403
552.7 IPS |
|
|
Object Detection (I8)
|
56% |
7071
527.9 IPS |
|
|
Face Detection (F32)
|
100% |
38105
453.1 IPS |
|
|
Face Detection (F16)
|
100% |
42276
502.7 IPS |
|
|
Face Detection (I8)
|
89% |
36175
430.1 IPS |
|
|
Depth Estimation (F32)
|
100% |
73366
569.0 IPS |
|
|
Depth Estimation (F16)
|
100% |
73251
568.1 IPS |
|
|
Depth Estimation (I8)
|
95% |
60884
472.2 IPS |
|
|
Style Transfer (F32)
|
100% |
341983
449.8 IPS |
|
|
Style Transfer (F16)
|
100% |
320091
421.1 IPS |
|
|
Style Transfer (I8)
|
98% |
306906
403.7 IPS |
|
|
Image Super-Resolution (F32)
|
100% |
41978
1.50 KIPS |
|
|
Image Super-Resolution (F16)
|
100% |
42844
1.53 KIPS |
|
|
Image Super-Resolution (I8)
|
99% |
31972
1.14 KIPS |
|
|
Text Classification (F32)
|
100% |
4178
6.00 KIPS |
|
|
Text Classification (F16)
|
100% |
4604
6.62 KIPS |
|
|
Text Classification (I8)
|
98% |
2512
3.61 KIPS |
|
|
Machine Translation (F32)
|
100% |
5676
104.4 IPS |
|
|
Machine Translation (F16)
|
100% |
5962
109.7 IPS |
|
|
Machine Translation (I8)
|
70% |
3693
68.0 IPS |