| Upload Date | November 24 2025 03:36 AM |
| Views | 10 |
| System Information | |
|---|---|
| Operating System | Android 16 |
| Model | Samsung Galaxy Tab S8 |
| Model ID | samsung SM-X700 |
| Motherboard | taro |
| Governor | walt |
| CPU Information | |
|---|---|
| Name | ARM ARMv8 |
| Topology | 1 Processor, 8 Cores |
| Identifier | ARM implementer 65 architecture 8 variant 2 part 3400 revision 0 |
| Base Frequency | 1.78 GHz |
| Cluster 1 | 4 Cores @ 1.79 GHz |
| Cluster 2 | 3 Cores @ 2.50 GHz |
| Cluster 3 | 1 Core @ 3.00 GHz |
| Memory Information | |
|---|---|
| Size | 7.12 GB |
| Inference Information | |
|---|---|
| Framework | TensorFlow Lite |
| Backend | NNAPI |
| Device | Default |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (F32)
|
100% |
190
35.6 IPS |
|
|
Image Classification (F16)
|
100% |
180
33.7 IPS |
|
|
Image Classification (I8)
|
97% |
528
98.7 IPS |
|
|
Image Segmentation (F32)
|
100% |
215
3.60 IPS |
|
|
Image Segmentation (F16)
|
100% |
214
3.57 IPS |
|
|
Image Segmentation (I8)
|
98% |
518
8.65 IPS |
|
|
Pose Estimation (F32)
|
100% |
282
0.34 IPS |
|
|
Pose Estimation (F16)
|
100% |
275
0.33 IPS |
|
|
Pose Estimation (I8)
|
100% |
1187
1.44 IPS |
|
|
Object Detection (F32)
|
100% |
182
13.6 IPS |
|
|
Object Detection (F16)
|
100% |
185
13.8 IPS |
|
|
Object Detection (I8)
|
61% |
570
42.5 IPS |
|
|
Face Detection (F32)
|
100% |
469
5.57 IPS |
|
|
Face Detection (F16)
|
100% |
454
5.40 IPS |
|
|
Face Detection (I8)
|
86% |
1185
14.1 IPS |
|
|
Depth Estimation (F32)
|
100% |
369
2.86 IPS |
|
|
Depth Estimation (F16)
|
100% |
367
2.84 IPS |
|
|
Depth Estimation (I8)
|
95% |
1180
9.15 IPS |
|
|
Style Transfer (F32)
|
100% |
634
0.83 IPS |
|
|
Style Transfer (F16)
|
100% |
631
0.83 IPS |
|
|
Style Transfer (I8)
|
98% |
1562
2.05 IPS |
|
|
Image Super-Resolution (F32)
|
100% |
180
6.44 IPS |
|
|
Image Super-Resolution (F16)
|
100% |
173
6.16 IPS |
|
|
Image Super-Resolution (I8)
|
98% |
645
23.0 IPS |
|
|
Text Classification (F32)
|
100% |
205
295.2 IPS |
|
|
Text Classification (F16)
|
100% |
205
294.2 IPS |
|
|
Text Classification (I8)
|
92% |
372
535.2 IPS |
|
|
Machine Translation (F32)
|
100% |
376
6.91 IPS |
|
|
Machine Translation (F16)
|
100% |
358
6.58 IPS |
|
|
Machine Translation (I8)
|
64% |
395
7.27 IPS |