| Upload Date | January 07 2025 07:31 AM |
| Views | 5 |
| System Information | |
|---|---|
| Operating System | Android 14 |
| Model | Qualcomm msmnile_gvmq for arm64 |
| Model ID | Qualcomm msmnile_gvmq for arm64 |
| Motherboard | msmnile |
| Governor | schedutil |
| CPU Information | |
|---|---|
| Name | ARM ARMv8 |
| Topology | 1 Processor, 8 Cores |
| Identifier | ARM implementer 65 architecture 8 variant 0 part 3403 revision 0 |
| Base Frequency | 2.59 GHz |
| Cluster 1 | 4 Cores @ 2.25 GHz |
| Cluster 2 | 4 Cores @ 2.59 GHz |
| Memory Information | |
|---|---|
| Size | 10.20 GB |
| Inference Information | |
|---|---|
| Framework | TensorFlow Lite |
| Backend | NNAPI |
| Device | |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (F32)
|
100% |
451
48.3 IPS |
|
|
Image Classification (F16)
|
100% |
452
48.5 IPS |
|
|
Image Classification (I8)
|
81% |
343
36.7 IPS |
|
|
Image Segmentation (F32)
|
100% |
691
4.27 IPS |
|
|
Image Segmentation (F16)
|
100% |
706
4.36 IPS |
|
|
Image Segmentation (I8)
|
89% |
629
3.88 IPS |
|
|
Pose Estimation (F32)
|
100% |
362
1.46 IPS |
|
|
Pose Estimation (F16)
|
100% |
364
1.47 IPS |
|
|
Pose Estimation (I8)
|
80% |
111
0.45 IPS |
|
|
Object Detection (F32)
|
100% |
488
17.1 IPS |
|
|
Object Detection (F16)
|
100% |
487
17.1 IPS |
|
|
Object Detection (I8)
|
52% |
392
13.8 IPS |
|
|
Face Detection (F32)
|
100% |
668
7.68 IPS |
|
|
Face Detection (F16)
|
100% |
652
7.49 IPS |
|
|
Face Detection (I8)
|
75% |
477
5.48 IPS |
|
|
Text Classification (F32)
|
100% |
916
362.2 IPS |
|
|
Text Classification (F16)
|
100% |
913
361.3 IPS |
|
|
Machine Translation (F32)
|
100% |
671
103.4 IPS |
|
|
Machine Translation (F16)
|
100% |
663
102.2 IPS |