Upload Date | August 15 2024 02:50 PM |
Views | 2 |
System Information | |
---|---|
Operating System | Microsoft Windows 11 Pro (64-bit) |
Model | HP HP EliteBook 645 14 inch G11 Notebook PC |
Motherboard | HP 8C7A |
Power Plan | HP Optimized (Modern Standby) |
CPU Information | |
---|---|
Name | AMD Ryzen 7 Pro 7735U with Radeon Graphics |
Topology | 1 Processor, 8 Cores, 16 Threads |
Identifier | AuthenticAMD Family 25 Model 68 Stepping 1 |
Base Frequency | 2.70 GHz |
Cluster 1 | 8 Cores |
L1 Instruction Cache | 32.0 KB x 8 |
L1 Data Cache | 32.0 KB x 8 |
L2 Cache | 512 KB x 8 |
L3 Cache | 16.0 MB x 1 |
Memory Information | |
---|---|
Size | 16.00 GB |
Inference Information | |
---|---|
Framework | ONNX |
Backend | DirectML |
Device | AMD Radeon(TM) Graphics |
Workload | Accuracy | Score | |
---|---|---|---|
Image Classification (F32)
|
100% |
1711
320.2 IPS |
|
Image Classification (F16)
|
100% |
1715
321.0 IPS |
|
Image Classification (I8)
|
100% |
1405
262.8 IPS |
|
Image Segmentation (F32)
|
100% |
2739
45.7 IPS |
|
Image Segmentation (F16)
|
100% |
2735
45.7 IPS |
|
Image Segmentation (I8)
|
98% |
2218
37.0 IPS |
|
Pose Estimation (F32)
|
100% |
23631
28.6 IPS |
|
Pose Estimation (F16)
|
100% |
23948
29.0 IPS |
|
Pose Estimation (I8)
|
100% |
18211
22.1 IPS |
|
Object Detection (F32)
|
100% |
1437
107.3 IPS |
|
Object Detection (F16)
|
100% |
1392
103.9 IPS |
|
Object Detection (I8)
|
62% |
1290
96.3 IPS |
|
Face Detection (F32)
|
100% |
3989
47.4 IPS |
|
Face Detection (F16)
|
100% |
3978
47.3 IPS |
|
Face Detection (I8)
|
89% |
3119
37.1 IPS |
|
Depth Estimation (F32)
|
100% |
11653
90.4 IPS |
|
Depth Estimation (F16)
|
100% |
11218
87.0 IPS |
|
Depth Estimation (I8)
|
94% |
8996
69.8 IPS |
|
Style Transfer (F32)
|
100% |
44757
58.9 IPS |
|
Style Transfer (F16)
|
100% |
44576
58.6 IPS |
|
Style Transfer (I8)
|
98% |
30121
39.6 IPS |
|
Image Super-Resolution (F32)
|
100% |
8334
297.6 IPS |
|
Image Super-Resolution (F16)
|
100% |
6557
234.2 IPS |
|
Image Super-Resolution (I8)
|
99% |
5842
208.6 IPS |
|
Text Classification (F32)
|
100% |
1351
1.94 KIPS |
|
Text Classification (F16)
|
100% |
1345
1.93 KIPS |
|
Text Classification (I8)
|
98% |
1008
1.45 KIPS |
|
Machine Translation (F32)
|
100% |
2095
38.5 IPS |
|
Machine Translation (F16)
|
100% |
2101
38.7 IPS |
|
Machine Translation (I8)
|
70% |
1244
22.9 IPS |