Upload Date | August 03 2024 12:37 AM |
Views | 14 |
System Information | |
---|---|
Operating System | Microsoft Windows 11 Pro (64-bit) |
Model | HP HP ENVY Laptop 16-h1xxx |
Motherboard | HP 8BE5 |
Power Plan | Dengeli |
CPU Information | |
---|---|
Name | Intel Core i7-13700H |
Topology | 1 Processor, 14 Cores, 20 Threads |
Identifier | GenuineIntel Family 6 Model 186 Stepping 2 |
Base Frequency | 2.40 GHz |
Cluster 1 | 6 Cores |
Cluster 2 | 8 Cores |
L1 Instruction Cache | 32.0 KB x 10 |
L1 Data Cache | 48.0 KB x 10 |
L2 Cache | 1.25 MB x 2 |
L3 Cache | 24.0 MB x 1 |
Memory Information | |
---|---|
Size | 32.00 GB |
Inference Information | |
---|---|
Framework | ONNX |
Backend | DirectML |
Device | NVIDIA GeForce RTX 4060 Laptop GPU |
Workload | Accuracy | Score | |
---|---|---|---|
Image Classification (F32)
|
100% |
5845
1.09 KIPS |
|
Image Classification (F16)
|
100% |
5983
1.12 KIPS |
|
Image Classification (I8)
|
100% |
5141
962.1 IPS |
|
Image Segmentation (F32)
|
100% |
9119
152.3 IPS |
|
Image Segmentation (F16)
|
100% |
9532
159.2 IPS |
|
Image Segmentation (I8)
|
98% |
8474
141.5 IPS |
|
Pose Estimation (F32)
|
100% |
76547
92.7 IPS |
|
Pose Estimation (F16)
|
100% |
77209
93.5 IPS |
|
Pose Estimation (I8)
|
100% |
67998
82.3 IPS |
|
Object Detection (F32)
|
100% |
2674
199.6 IPS |
|
Object Detection (F16)
|
100% |
2680
200.1 IPS |
|
Object Detection (I8)
|
61% |
4411
329.3 IPS |
|
Face Detection (F32)
|
100% |
16495
196.1 IPS |
|
Face Detection (F16)
|
100% |
16943
201.5 IPS |
|
Face Detection (I8)
|
89% |
14397
171.2 IPS |
|
Depth Estimation (F32)
|
100% |
34256
265.7 IPS |
|
Depth Estimation (F16)
|
100% |
35188
272.9 IPS |
|
Depth Estimation (I8)
|
94% |
27968
216.9 IPS |
|
Style Transfer (F32)
|
100% |
129179
169.9 IPS |
|
Style Transfer (F16)
|
100% |
117320
154.3 IPS |
|
Style Transfer (I8)
|
98% |
106033
139.5 IPS |
|
Image Super-Resolution (F32)
|
100% |
21945
783.7 IPS |
|
Image Super-Resolution (F16)
|
100% |
23011
821.8 IPS |
|
Image Super-Resolution (I8)
|
99% |
16534
590.5 IPS |
|
Text Classification (F32)
|
100% |
2509
3.61 KIPS |
|
Text Classification (F16)
|
100% |
2548
3.66 KIPS |
|
Text Classification (I8)
|
98% |
1355
1.95 KIPS |
|
Machine Translation (F32)
|
100% |
3188
58.7 IPS |
|
Machine Translation (F16)
|
100% |
3206
59.0 IPS |
|
Machine Translation (I8)
|
70% |
1762
32.4 IPS |