| User | Beamish |
| Upload Date | February 06 2026 10:35 PM |
| Views | 5 |
| AI Information | |
|---|---|
| Framework | TensorFlow Lite |
| Backend | QNN |
| Device | Qualcomm Snapdragon 888 |
| System Information | |
|---|---|
| Operating System | Android 15 |
| Model | Samsung Galaxy Z Flip3 |
| Model ID | samsung SM-F711B |
| Motherboard | lahaina |
| Governor | schedutil |
| CPU Information | |
|---|---|
| Name | ARM SM8350 |
| Topology | 1 Processor, 8 Cores |
| Identifier | ARM implementer 65 architecture 8 variant 1 part 3396 revision 0 |
| Base Frequency | 1.80 GHz |
| Cluster 1 | 4 Cores @ 1.80 GHz |
| Cluster 2 | 3 Cores @ 2.42 GHz |
| Cluster 3 | 1 Core @ 2.84 GHz |
| Memory Information | |
|---|---|
| Size | 7.22 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
32
5.96 IPS |
|
|
Image Classification (HP)
|
100% |
32
6.03 IPS |
|
|
Image Classification (Q)
|
99% |
9789
1.83 KIPS |
|
|
Image Segmentation (SP)
|
100% |
42
0.68 IPS |
|
|
Image Segmentation (HP)
|
100% |
41
0.67 IPS |
|
|
Image Segmentation (Q)
|
98% |
10669
173.5 IPS |
|
|
Pose Estimation (SP)
|
100% |
59
0.07 IPS |
|
|
Pose Estimation (HP)
|
100% |
60
0.07 IPS |
|
|
Pose Estimation (Q)
|
94% |
98449
115.4 IPS |
|
|
Object Detection (SP)
|
100% |
33
2.65 IPS |
|
|
Object Detection (HP)
|
100% |
33
2.62 IPS |
|
|
Object Detection (Q)
|
87% |
5880
471.8 IPS |
|
|
Face Detection (SP)
|
100% |
78
0.92 IPS |
|
|
Face Detection (HP)
|
100% |
78
0.92 IPS |
|
|
Face Detection (Q)
|
97% |
19197
228.9 IPS |
|
|
Depth Estimation (SP)
|
100% |
74
0.57 IPS |
|
|
Depth Estimation (HP)
|
99% |
75
0.58 IPS |
|
|
Depth Estimation (Q)
|
64% |
39796
365.7 IPS |
|
|
Style Transfer (SP)
|
100% |
134
0.17 IPS |
|
|
Style Transfer (HP)
|
100% |
134
0.17 IPS |
|
|
Style Transfer (Q)
|
98% |
139398
179.8 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
41
1.50 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
40
1.49 IPS |
|
|
Image Super-Resolution (Q)
|
97% |
30298
1.12 KIPS |
|
|
Text Classification (SP)
|
100% |
56
74.9 IPS |
|
|
Text Classification (HP)
|
100% |
56
75.4 IPS |
|
|
Text Classification (Q)
|
94% |
2794
3.75 KIPS |
|
|
Machine Translation (SP)
|
100% |
86
1.49 IPS |
|
|
Machine Translation (HP)
|
100% |
85
1.47 IPS |
|
|
Machine Translation (Q)
|
52% |
535
16.1 IPS |