| Upload Date | January 29 2026 06:38 AM |
| Views | 2 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 4080 |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro for Workstations (64-bit) |
| Model | ASUS System Product Name |
| Motherboard | ASUSTeK COMPUTER INC. Pro WS TRX50-SAGE WIFI |
| Power Plan | Ultimate Performance |
| CPU Information | |
|---|---|
| Name | AMD Ryzen Threadripper 7970X |
| Topology | 1 Processor, 32 Cores, 64 Threads |
| Identifier | AuthenticAMD Family 25 Model 24 Stepping 1 |
| Base Frequency | 4.00 GHz |
| Cluster 1 | 32 Cores |
| Memory Information | |
|---|---|
| Size | 128.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
13273
2.47 KIPS |
|
|
Image Classification (HP)
|
99% |
18888
3.52 KIPS |
|
|
Image Classification (Q)
|
100% |
11576
2.15 KIPS |
|
|
Image Segmentation (SP)
|
100% |
25484
413.1 IPS |
|
|
Image Segmentation (HP)
|
100% |
34411
557.8 IPS |
|
|
Image Segmentation (Q)
|
98% |
23440
381.2 IPS |
|
|
Pose Estimation (SP)
|
100% |
268141
312.9 IPS |
|
|
Pose Estimation (HP)
|
100% |
532440
621.3 IPS |
|
|
Pose Estimation (Q)
|
96% |
236722
277.4 IPS |
|
|
Object Detection (SP)
|
100% |
17247
1.37 KIPS |
|
|
Object Detection (HP)
|
100% |
24870
1.97 KIPS |
|
|
Object Detection (Q)
|
85% |
14835
1.19 KIPS |
|
|
Face Detection (SP)
|
100% |
52071
618.7 IPS |
|
|
Face Detection (HP)
|
100% |
70252
834.7 IPS |
|
|
Face Detection (Q)
|
97% |
44247
527.6 IPS |
|
|
Depth Estimation (SP)
|
100% |
79949
616.0 IPS |
|
|
Depth Estimation (HP)
|
99% |
158493
1.22 KIPS |
|
|
Depth Estimation (Q)
|
78% |
61923
494.5 IPS |
|
|
Style Transfer (SP)
|
100% |
403313
518.5 IPS |
|
|
Style Transfer (HP)
|
100% |
929489
1.19 KIPS |
|
|
Style Transfer (Q)
|
98% |
351850
453.7 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
55900
2.06 KIPS |
|
|
Image Super-Resolution (HP)
|
100% |
75800
2.80 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
41380
1.53 KIPS |
|
|
Text Classification (SP)
|
100% |
3547
4.73 KIPS |
|
|
Text Classification (HP)
|
99% |
4355
5.81 KIPS |
|
|
Text Classification (Q)
|
97% |
2214
2.97 KIPS |
|
|
Machine Translation (SP)
|
100% |
6476
111.5 IPS |
|
|
Machine Translation (HP)
|
100% |
6370
109.7 IPS |
|
|
Machine Translation (Q)
|
70% |
2907
54.5 IPS |