| User | TomKauw | 
| Upload Date | August 14 2025 01:58 PM | 
| Views | 8 | 
| AI Information | |
|---|---|
| Framework | OpenVINO | 
| Backend | CPU | 
| Device | Intel(R) Core(TM) Ultra 9 275HX | 
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Home (64-bit) | 
| Model | Micro-Star International Co., Ltd. Vector 17 HX AI A2XWIG | 
| Motherboard | Micro-Star International Co., Ltd. MS-17S3 | 
| Power Plan | Balanced | 
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 9 275HX | 
| Topology | 1 Processor, 24 Cores | 
| Identifier | GenuineIntel Family 6 Model 198 Stepping 2 | 
| Base Frequency | 2.70 GHz | 
| Cluster 1 | 8 Cores | 
| Cluster 2 | 16 Cores | 
| Memory Information | |
|---|---|
| Size | 32.00 GB | 
| Workload | Accuracy | Score | |
|---|---|---|---|
| Image Classification (SP) | 100% | 5644 1.05 KIPS | |
| Image Classification (HP) | 100% | 6375 1.19 KIPS | |
| Image Classification (Q) | 100% | 9967 1.85 KIPS | |
| Image Segmentation (SP) | 100% | 8053 130.6 IPS | |
| Image Segmentation (HP) | 100% | 4401 71.3 IPS | |
| Image Segmentation (Q) | 99% | 12681 205.6 IPS | |
| Pose Estimation (SP) | 100% | 13337 15.6 IPS | |
| Pose Estimation (HP) | 100% | 13335 15.6 IPS | |
| Pose Estimation (Q) | 96% | 30573 35.8 IPS | |
| Object Detection (SP) | 100% | 5725 454.1 IPS | |
| Object Detection (HP) | 100% | 6565 520.8 IPS | |
| Object Detection (Q) | 88% | 11136 892.7 IPS | |
| Face Detection (SP) | 100% | 16242 193.0 IPS | |
| Face Detection (HP) | 100% | 19345 229.9 IPS | |
| Face Detection (Q) | 100% | 29357 348.8 IPS | |
| Depth Estimation (SP) | 100% | 14136 108.9 IPS | |
| Depth Estimation (HP) | 99% | 16912 130.3 IPS | |
| Depth Estimation (Q) | 89% | 30694 238.7 IPS | |
| Style Transfer (SP) | 100% | 26933 34.6 IPS | |
| Style Transfer (HP) | 100% | 23354 30.0 IPS | |
| Style Transfer (Q) | 98% | 89543 115.5 IPS | |
| Image Super-Resolution (SP) | 100% | 8087 298.6 IPS | |
| Image Super-Resolution (HP) | 100% | 8382 309.5 IPS | |
| Image Super-Resolution (Q) | 99% | 17260 639.2 IPS | |
| Text Classification (SP) | 100% | 4087 5.46 KIPS | |
| Text Classification (HP) | 100% | 3239 4.32 KIPS | |
| Text Classification (Q) | 92% | 6067 8.15 KIPS | |
| Machine Translation (SP) | 100% | 3564 61.4 IPS | |
| Machine Translation (HP) | 100% | 7184 123.8 IPS | |
| Machine Translation (Q) | 100% | 3992 68.8 IPS |