| User | O-EtaIXVII |
| Upload Date | July 05 2025 07:25 AM |
| Views | 9 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 5090 |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 (64-bit) |
| Model | ASUS System Product Name |
| Motherboard | ASUSTeK COMPUTER INC. ROG MAXIMUS Z890 APEX |
| Power Plan | High performance |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 9 285K |
| Topology | 1 Processor, 24 Cores |
| Identifier | GenuineIntel Family 6 Model 198 Stepping 2 |
| Base Frequency | 3.70 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 48.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
18143
3.37 KIPS |
|
|
Image Classification (HP)
|
100% |
23671
4.40 KIPS |
|
|
Image Classification (Q)
|
100% |
15497
2.88 KIPS |
|
|
Image Segmentation (SP)
|
100% |
38324
621.3 IPS |
|
|
Image Segmentation (HP)
|
100% |
49185
797.3 IPS |
|
|
Image Segmentation (Q)
|
98% |
34498
561.0 IPS |
|
|
Pose Estimation (SP)
|
100% |
407416
475.4 IPS |
|
|
Pose Estimation (HP)
|
100% |
955728
1.12 KIPS |
|
|
Pose Estimation (Q)
|
96% |
324596
380.2 IPS |
|
|
Object Detection (SP)
|
100% |
25213
2.00 KIPS |
|
|
Object Detection (HP)
|
100% |
33338
2.64 KIPS |
|
|
Object Detection (Q)
|
85% |
20589
1.66 KIPS |
|
|
Face Detection (SP)
|
100% |
74501
885.2 IPS |
|
|
Face Detection (HP)
|
100% |
100049
1.19 KIPS |
|
|
Face Detection (Q)
|
97% |
58635
699.2 IPS |
|
|
Depth Estimation (SP)
|
100% |
108673
837.3 IPS |
|
|
Depth Estimation (HP)
|
99% |
198524
1.53 KIPS |
|
|
Depth Estimation (Q)
|
77% |
77152
618.0 IPS |
|
|
Style Transfer (SP)
|
100% |
605751
778.7 IPS |
|
|
Style Transfer (HP)
|
100% |
1773029
2.28 KIPS |
|
|
Style Transfer (Q)
|
98% |
508176
655.3 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
75784
2.80 KIPS |
|
|
Image Super-Resolution (HP)
|
100% |
101441
3.75 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
53861
1.99 KIPS |
|
|
Text Classification (SP)
|
100% |
4499
6.01 KIPS |
|
|
Text Classification (HP)
|
100% |
5458
7.29 KIPS |
|
|
Text Classification (Q)
|
97% |
2588
3.47 KIPS |
|
|
Machine Translation (SP)
|
100% |
7672
132.2 IPS |
|
|
Machine Translation (HP)
|
100% |
7679
132.3 IPS |
|
|
Machine Translation (Q)
|
70% |
3266
61.3 IPS |