| Upload Date | June 16 2025 06:02 AM |
| Views | 8 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 5060 Laptop GPU |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Home (64-bit) |
| Model | LENOVO 83JE |
| Motherboard | LENOVO LNVNB161216 |
| Power Plan | Zrwnowaony |
| CPU Information | |
|---|---|
| Name | Intel Core i7-13650HX |
| Topology | 1 Processor, 14 Cores, 20 Threads |
| Identifier | GenuineIntel Family 6 Model 183 Stepping 1 |
| Base Frequency | 2.60 GHz |
| Cluster 1 | 6 Cores |
| Cluster 2 | 8 Cores |
| Memory Information | |
|---|---|
| Size | 16.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
6563
1.22 KIPS |
|
|
Image Classification (HP)
|
100% |
12892
2.40 KIPS |
|
|
Image Classification (Q)
|
99% |
6322
1.18 KIPS |
|
|
Image Segmentation (SP)
|
100% |
11212
181.8 IPS |
|
|
Image Segmentation (HP)
|
100% |
17191
278.7 IPS |
|
|
Image Segmentation (Q)
|
98% |
10508
170.9 IPS |
|
|
Pose Estimation (SP)
|
100% |
76956
89.8 IPS |
|
|
Pose Estimation (HP)
|
100% |
230316
268.7 IPS |
|
|
Pose Estimation (Q)
|
96% |
66314
77.7 IPS |
|
|
Object Detection (SP)
|
100% |
7756
615.2 IPS |
|
|
Object Detection (HP)
|
100% |
15279
1.21 KIPS |
|
|
Object Detection (Q)
|
87% |
6626
531.8 IPS |
|
|
Face Detection (SP)
|
100% |
20169
239.7 IPS |
|
|
Face Detection (HP)
|
100% |
32223
382.9 IPS |
|
|
Face Detection (Q)
|
97% |
16423
195.8 IPS |
|
|
Depth Estimation (SP)
|
100% |
34795
268.1 IPS |
|
|
Depth Estimation (HP)
|
99% |
74522
574.1 IPS |
|
|
Depth Estimation (Q)
|
77% |
30037
240.2 IPS |
|
|
Style Transfer (SP)
|
100% |
116555
149.8 IPS |
|
|
Style Transfer (HP)
|
100% |
376087
483.5 IPS |
|
|
Style Transfer (Q)
|
98% |
102279
131.9 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
19415
716.9 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
45573
1.68 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
16226
600.8 IPS |
|
|
Text Classification (SP)
|
100% |
3005
4.01 KIPS |
|
|
Text Classification (HP)
|
100% |
3674
4.90 KIPS |
|
|
Text Classification (Q)
|
97% |
1758
2.35 KIPS |
|
|
Machine Translation (SP)
|
100% |
3835
66.1 IPS |
|
|
Machine Translation (HP)
|
100% |
4146
71.4 IPS |
|
|
Machine Translation (Q)
|
70% |
1633
30.6 IPS |