| User | Betancd |
| Upload Date | February 15 2025 06:38 AM |
| Views | 22 |
| AI Information | |
|---|---|
| Framework | TensorFlow Lite |
| Backend | QNN |
| Device | Qualcomm ARMv8 |
| System Information | |
|---|---|
| Operating System | Android 15 |
| Model | samsung SM-S938U1 |
| Model ID | samsung SM-S938U1 |
| Motherboard | sun |
| Governor | walt |
| CPU Information | |
|---|---|
| Name | Qualcomm ARMv8 |
| Topology | 1 Processor, 8 Cores |
| Identifier | ARM implementer 81 architecture 8 variant 3 part 1 revision 4 |
| Base Frequency | 3.53 GHz |
| Cluster 1 | 6 Cores @ 3.53 GHz |
| Cluster 2 | 2 Cores @ 4.47 GHz |
| Memory Information | |
|---|---|
| Size | 10.86 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
458
85.1 IPS |
|
|
Image Classification (HP)
|
100% |
21438
3.99 KIPS |
|
|
Image Classification (Q)
|
97% |
49510
9.24 KIPS |
|
|
Image Segmentation (SP)
|
100% |
573
9.29 IPS |
|
|
Image Segmentation (HP)
|
100% |
13692
222.0 IPS |
|
|
Image Segmentation (Q)
|
98% |
41700
678.1 IPS |
|
|
Pose Estimation (SP)
|
100% |
643
0.75 IPS |
|
|
Pose Estimation (HP)
|
100% |
123874
144.5 IPS |
|
|
Pose Estimation (Q)
|
98% |
478115
559.6 IPS |
|
|
Object Detection (SP)
|
100% |
312
24.7 IPS |
|
|
Object Detection (HP)
|
100% |
18896
1.50 KIPS |
|
|
Object Detection (Q)
|
85% |
21667
1.74 KIPS |
|
|
Face Detection (SP)
|
100% |
810
9.62 IPS |
|
|
Face Detection (HP)
|
100% |
42171
501.1 IPS |
|
|
Face Detection (Q)
|
97% |
143874
1.72 KIPS |
|
|
Depth Estimation (SP)
|
100% |
785
6.05 IPS |
|
|
Depth Estimation (HP)
|
99% |
84045
647.5 IPS |
|
|
Depth Estimation (Q)
|
63% |
144875
1.34 KIPS |
|
|
Style Transfer (SP)
|
100% |
1263
1.62 IPS |
|
|
Style Transfer (HP)
|
98% |
98860
127.5 IPS |
|
|
Style Transfer (Q)
|
98% |
490962
633.1 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
343
12.7 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
53817
1.99 KIPS |
|
|
Image Super-Resolution (Q)
|
97% |
135068
5.00 KIPS |
|
|
Text Classification (SP)
|
100% |
460
613.7 IPS |
|
|
Text Classification (HP)
|
100% |
3914
5.22 KIPS |
|
|
Text Classification (Q)
|
93% |
7946
10.7 KIPS |
|
|
Machine Translation (SP)
|
100% |
851
14.7 IPS |
|
|
Machine Translation (HP)
|
100% |
4708
81.1 IPS |
|
|
Machine Translation (Q)
|
56% |
3131
80.7 IPS |