| User | NeilB |
| Upload Date | September 29 2024 03:19 PM |
| Views | 11 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | CPU |
| Device | AMD Ryzen 9 9950X 16-Core Processor |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | ASUS System Product Name |
| Motherboard | ASUSTeK COMPUTER INC. ROG CROSSHAIR X670E GENE |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | AMD Ryzen 9 9950X 16-Core Processor |
| Topology | 1 Processor, 16 Cores, 32 Threads |
| Identifier | AuthenticAMD Family 26 Model 68 Stepping 0 |
| Base Frequency | 4.30 GHz |
| Cluster 1 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
7349
1.37 KIPS |
|
|
Image Classification (HP)
|
100% |
7293
1.36 KIPS |
|
|
Image Classification (Q)
|
100% |
14372
2.67 KIPS |
|
|
Image Segmentation (SP)
|
100% |
8633
139.9 IPS |
|
|
Image Segmentation (HP)
|
100% |
9081
147.2 IPS |
|
|
Image Segmentation (Q)
|
99% |
18508
300.0 IPS |
|
|
Pose Estimation (SP)
|
100% |
33262
38.8 IPS |
|
|
Pose Estimation (HP)
|
100% |
33285
38.8 IPS |
|
|
Pose Estimation (Q)
|
98% |
133511
156.3 IPS |
|
|
Object Detection (SP)
|
100% |
8488
673.3 IPS |
|
|
Object Detection (HP)
|
100% |
8335
661.1 IPS |
|
|
Object Detection (Q)
|
88% |
18940
1.52 KIPS |
|
|
Face Detection (SP)
|
100% |
20064
238.4 IPS |
|
|
Face Detection (HP)
|
100% |
18067
214.7 IPS |
|
|
Face Detection (Q)
|
100% |
50050
594.7 IPS |
|
|
Depth Estimation (SP)
|
100% |
24917
192.0 IPS |
|
|
Depth Estimation (HP)
|
100% |
24641
189.8 IPS |
|
|
Depth Estimation (Q)
|
80% |
68255
540.9 IPS |
|
|
Style Transfer (SP)
|
100% |
86440
111.1 IPS |
|
|
Style Transfer (HP)
|
100% |
86405
111.1 IPS |
|
|
Style Transfer (Q)
|
98% |
303500
391.4 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
15435
569.9 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
15418
569.3 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
38527
1.43 KIPS |
|
|
Text Classification (SP)
|
100% |
5009
6.69 KIPS |
|
|
Text Classification (HP)
|
100% |
5008
6.68 KIPS |
|
|
Text Classification (Q)
|
92% |
5955
8.00 KIPS |
|
|
Machine Translation (SP)
|
100% |
7553
130.1 IPS |
|
|
Machine Translation (HP)
|
100% |
7525
129.6 IPS |
|
|
Machine Translation (Q)
|
85% |
6895
120.5 IPS |