| User | NeilB |
| Upload Date | September 26 2024 12:02 PM |
| Views | 13 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | CPU |
| Device | AMD Ryzen 9 9950X 16-Core Processor |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | ASUS System Product Name |
| Motherboard | ASUSTeK COMPUTER INC. ROG CROSSHAIR X670E GENE |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | AMD Ryzen 9 9950X 16-Core Processor |
| Topology | 1 Processor, 16 Cores, 32 Threads |
| Identifier | AuthenticAMD Family 26 Model 68 Stepping 0 |
| Base Frequency | 4.30 GHz |
| Cluster 1 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
6963
1.29 KIPS |
|
|
Image Classification (HP)
|
100% |
6827
1.27 KIPS |
|
|
Image Classification (Q)
|
100% |
14983
2.79 KIPS |
|
|
Image Segmentation (SP)
|
100% |
8330
135.0 IPS |
|
|
Image Segmentation (HP)
|
100% |
8478
137.4 IPS |
|
|
Image Segmentation (Q)
|
99% |
18383
298.0 IPS |
|
|
Pose Estimation (SP)
|
100% |
33484
39.1 IPS |
|
|
Pose Estimation (HP)
|
100% |
33416
39.0 IPS |
|
|
Pose Estimation (Q)
|
98% |
129560
151.7 IPS |
|
|
Object Detection (SP)
|
100% |
7512
595.8 IPS |
|
|
Object Detection (HP)
|
100% |
7532
597.4 IPS |
|
|
Object Detection (Q)
|
88% |
17341
1.39 KIPS |
|
|
Face Detection (SP)
|
100% |
17646
209.7 IPS |
|
|
Face Detection (HP)
|
100% |
16610
197.4 IPS |
|
|
Face Detection (Q)
|
100% |
52016
618.1 IPS |
|
|
Depth Estimation (SP)
|
100% |
24604
189.6 IPS |
|
|
Depth Estimation (HP)
|
100% |
23739
182.9 IPS |
|
|
Depth Estimation (Q)
|
80% |
63700
504.8 IPS |
|
|
Style Transfer (SP)
|
100% |
85568
110.0 IPS |
|
|
Style Transfer (HP)
|
100% |
87129
112.0 IPS |
|
|
Style Transfer (Q)
|
98% |
306458
395.2 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
15471
571.3 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
15420
569.4 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
39056
1.45 KIPS |
|
|
Text Classification (SP)
|
100% |
5156
6.88 KIPS |
|
|
Text Classification (HP)
|
100% |
5530
7.38 KIPS |
|
|
Text Classification (Q)
|
92% |
6496
8.73 KIPS |
|
|
Machine Translation (SP)
|
100% |
6632
114.2 IPS |
|
|
Machine Translation (HP)
|
100% |
6585
113.4 IPS |
|
|
Machine Translation (Q)
|
85% |
7201
125.9 IPS |