| User | RiversC |
| Upload Date | September 25 2024 03:04 PM |
| Views | 9 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 4070 |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Enterprise (64-bit) |
| Model | ASUS System Product Name |
| Motherboard | ASUSTeK COMPUTER INC. Pro WS WRX80E-SAGE SE WIFI |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | AMD Ryzen Threadripper PRO 5965WX |
| Topology | 1 Processor, 24 Cores, 48 Threads |
| Identifier | AuthenticAMD Family 25 Model 8 Stepping 2 |
| Base Frequency | 3.80 GHz |
| Cluster 1 | 24 Cores |
| Memory Information | |
|---|---|
| Size | 256.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
9131
1.70 KIPS |
|
|
Image Classification (HP)
|
99% |
13056
2.44 KIPS |
|
|
Image Classification (Q)
|
100% |
8024
1.49 KIPS |
|
|
Image Segmentation (SP)
|
100% |
10548
171.0 IPS |
|
|
Image Segmentation (HP)
|
100% |
12258
198.7 IPS |
|
|
Image Segmentation (Q)
|
98% |
10089
164.0 IPS |
|
|
Pose Estimation (SP)
|
100% |
148598
173.4 IPS |
|
|
Pose Estimation (HP)
|
100% |
322627
376.5 IPS |
|
|
Pose Estimation (Q)
|
97% |
129802
152.0 IPS |
|
|
Object Detection (SP)
|
100% |
10663
845.8 IPS |
|
|
Object Detection (HP)
|
100% |
15437
1.22 KIPS |
|
|
Object Detection (Q)
|
88% |
8886
712.6 IPS |
|
|
Face Detection (SP)
|
100% |
27291
324.3 IPS |
|
|
Face Detection (HP)
|
100% |
37844
449.7 IPS |
|
|
Face Detection (Q)
|
97% |
22966
273.8 IPS |
|
|
Depth Estimation (SP)
|
100% |
55377
426.6 IPS |
|
|
Depth Estimation (HP)
|
99% |
96518
743.6 IPS |
|
|
Depth Estimation (Q)
|
76% |
43504
349.9 IPS |
|
|
Style Transfer (SP)
|
100% |
243121
312.5 IPS |
|
|
Style Transfer (HP)
|
100% |
496052
637.7 IPS |
|
|
Style Transfer (Q)
|
98% |
217318
280.2 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
37825
1.40 KIPS |
|
|
Image Super-Resolution (HP)
|
100% |
44295
1.64 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
28680
1.06 KIPS |
|
|
Text Classification (SP)
|
100% |
3043
4.06 KIPS |
|
|
Text Classification (HP)
|
99% |
3587
4.79 KIPS |
|
|
Text Classification (Q)
|
97% |
1984
2.66 KIPS |
|
|
Machine Translation (SP)
|
100% |
2713
46.7 IPS |
|
|
Machine Translation (HP)
|
100% |
2794
48.1 IPS |
|
|
Machine Translation (Q)
|
60% |
1422
31.7 IPS |