| User | RiversC |
| Upload Date | September 25 2024 03:04 PM |
| Views | 12 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 4070 |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Enterprise (64-bit) |
| Model | ASUS System Product Name |
| Motherboard | ASUSTeK COMPUTER INC. Pro WS WRX80E-SAGE SE WIFI |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | AMD Ryzen Threadripper PRO 5965WX |
| Topology | 1 Processor, 24 Cores, 48 Threads |
| Identifier | AuthenticAMD Family 25 Model 8 Stepping 2 |
| Base Frequency | 3.80 GHz |
| Cluster 1 | 24 Cores |
| Memory Information | |
|---|---|
| Size | 256.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
9544
1.77 KIPS |
|
|
Image Classification (HP)
|
99% |
14020
2.62 KIPS |
|
|
Image Classification (Q)
|
100% |
8379
1.56 KIPS |
|
|
Image Segmentation (SP)
|
100% |
10601
171.9 IPS |
|
|
Image Segmentation (HP)
|
100% |
11549
187.2 IPS |
|
|
Image Segmentation (Q)
|
98% |
9613
156.3 IPS |
|
|
Pose Estimation (SP)
|
100% |
147643
172.3 IPS |
|
|
Pose Estimation (HP)
|
100% |
324463
378.6 IPS |
|
|
Pose Estimation (Q)
|
97% |
131300
153.8 IPS |
|
|
Object Detection (SP)
|
100% |
10779
855.0 IPS |
|
|
Object Detection (HP)
|
100% |
15647
1.24 KIPS |
|
|
Object Detection (Q)
|
88% |
8952
717.9 IPS |
|
|
Face Detection (SP)
|
100% |
26737
317.7 IPS |
|
|
Face Detection (HP)
|
100% |
37658
447.5 IPS |
|
|
Face Detection (Q)
|
97% |
22424
267.4 IPS |
|
|
Depth Estimation (SP)
|
100% |
55308
426.1 IPS |
|
|
Depth Estimation (HP)
|
99% |
98277
757.2 IPS |
|
|
Depth Estimation (Q)
|
76% |
43453
349.5 IPS |
|
|
Style Transfer (SP)
|
100% |
245385
315.4 IPS |
|
|
Style Transfer (HP)
|
100% |
512173
658.4 IPS |
|
|
Style Transfer (Q)
|
98% |
221028
285.0 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
39033
1.44 KIPS |
|
|
Image Super-Resolution (HP)
|
100% |
46129
1.70 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
28891
1.07 KIPS |
|
|
Text Classification (SP)
|
100% |
3215
4.29 KIPS |
|
|
Text Classification (HP)
|
99% |
3998
5.34 KIPS |
|
|
Text Classification (Q)
|
97% |
2050
2.75 KIPS |
|
|
Machine Translation (SP)
|
100% |
2686
46.3 IPS |
|
|
Machine Translation (HP)
|
100% |
2723
46.9 IPS |
|
|
Machine Translation (Q)
|
60% |
1416
31.6 IPS |