| User | NeilB |
| Upload Date | September 16 2024 12:19 PM |
| Views | 14 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | CPU |
| Device | AMD Ryzen 9 9950X 16-Core Processor |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | ASUS System Product Name |
| Motherboard | ASUSTeK COMPUTER INC. ROG CROSSHAIR X670E GENE |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | AMD Ryzen 9 9950X 16-Core Processor |
| Topology | 1 Processor, 16 Cores, 32 Threads |
| Identifier | AuthenticAMD Family 26 Model 68 Stepping 0 |
| Base Frequency | 4.30 GHz |
| Cluster 1 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
6725
1.25 KIPS |
|
|
Image Classification (HP)
|
100% |
7120
1.32 KIPS |
|
|
Image Classification (Q)
|
100% |
14985
2.79 KIPS |
|
|
Image Segmentation (SP)
|
100% |
8209
133.1 IPS |
|
|
Image Segmentation (HP)
|
100% |
8212
133.1 IPS |
|
|
Image Segmentation (Q)
|
99% |
15764
255.5 IPS |
|
|
Pose Estimation (SP)
|
100% |
33647
39.3 IPS |
|
|
Pose Estimation (HP)
|
100% |
33553
39.2 IPS |
|
|
Pose Estimation (Q)
|
98% |
131693
154.2 IPS |
|
|
Object Detection (SP)
|
100% |
8544
677.7 IPS |
|
|
Object Detection (HP)
|
100% |
7844
622.2 IPS |
|
|
Object Detection (Q)
|
88% |
17332
1.39 KIPS |
|
|
Face Detection (SP)
|
100% |
19079
226.7 IPS |
|
|
Face Detection (HP)
|
100% |
16829
200.0 IPS |
|
|
Face Detection (Q)
|
100% |
44231
525.6 IPS |
|
|
Depth Estimation (SP)
|
100% |
25091
193.3 IPS |
|
|
Depth Estimation (HP)
|
100% |
24656
190.0 IPS |
|
|
Depth Estimation (Q)
|
80% |
61274
485.6 IPS |
|
|
Style Transfer (SP)
|
100% |
83341
107.1 IPS |
|
|
Style Transfer (HP)
|
100% |
82493
106.0 IPS |
|
|
Style Transfer (Q)
|
98% |
290406
374.5 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
13676
505.0 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
13857
511.7 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
35829
1.33 KIPS |
|
|
Text Classification (SP)
|
100% |
4960
6.62 KIPS |
|
|
Text Classification (HP)
|
100% |
4795
6.40 KIPS |
|
|
Text Classification (Q)
|
92% |
5677
7.63 KIPS |
|
|
Machine Translation (SP)
|
100% |
6321
108.9 IPS |
|
|
Machine Translation (HP)
|
100% |
5875
101.2 IPS |
|
|
Machine Translation (Q)
|
85% |
5970
104.4 IPS |