| User | NeilB |
| Upload Date | September 16 2024 12:06 PM |
| Views | 14 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | CPU |
| Device | AMD Ryzen 9 9950X 16-Core Processor |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | ASUS System Product Name |
| Motherboard | ASUSTeK COMPUTER INC. ROG CROSSHAIR X670E GENE |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | AMD Ryzen 9 9950X 16-Core Processor |
| Topology | 1 Processor, 16 Cores, 32 Threads |
| Identifier | AuthenticAMD Family 26 Model 68 Stepping 0 |
| Base Frequency | 4.30 GHz |
| Cluster 1 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
6768
1.26 KIPS |
|
|
Image Classification (HP)
|
100% |
7175
1.33 KIPS |
|
|
Image Classification (Q)
|
100% |
14606
2.72 KIPS |
|
|
Image Segmentation (SP)
|
100% |
8285
134.3 IPS |
|
|
Image Segmentation (HP)
|
100% |
8365
135.6 IPS |
|
|
Image Segmentation (Q)
|
99% |
16103
261.0 IPS |
|
|
Pose Estimation (SP)
|
100% |
33396
39.0 IPS |
|
|
Pose Estimation (HP)
|
100% |
33248
38.8 IPS |
|
|
Pose Estimation (Q)
|
98% |
132218
154.8 IPS |
|
|
Object Detection (SP)
|
100% |
8132
645.1 IPS |
|
|
Object Detection (HP)
|
100% |
7952
630.8 IPS |
|
|
Object Detection (Q)
|
88% |
17121
1.37 KIPS |
|
|
Face Detection (SP)
|
100% |
17072
202.8 IPS |
|
|
Face Detection (HP)
|
100% |
16799
199.6 IPS |
|
|
Face Detection (Q)
|
100% |
42106
500.3 IPS |
|
|
Depth Estimation (SP)
|
100% |
24520
188.9 IPS |
|
|
Depth Estimation (HP)
|
100% |
24547
189.1 IPS |
|
|
Depth Estimation (Q)
|
80% |
57724
457.5 IPS |
|
|
Style Transfer (SP)
|
100% |
82824
106.5 IPS |
|
|
Style Transfer (HP)
|
100% |
83423
107.2 IPS |
|
|
Style Transfer (Q)
|
98% |
290757
374.9 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
14053
518.9 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
13867
512.0 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
36351
1.35 KIPS |
|
|
Text Classification (SP)
|
100% |
4709
6.29 KIPS |
|
|
Text Classification (HP)
|
100% |
4633
6.18 KIPS |
|
|
Text Classification (Q)
|
92% |
5655
7.60 KIPS |
|
|
Machine Translation (SP)
|
100% |
6490
111.8 IPS |
|
|
Machine Translation (HP)
|
100% |
6524
112.4 IPS |
|
|
Machine Translation (Q)
|
85% |
6315
110.4 IPS |