| User | renkenzaki |
| Upload Date | February 08 2026 01:06 PM |
| Views | 8 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | CPU |
| Device | AMD Ryzen 9 9900X 12-Core Processor |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 IoT Enterprise LTSC (64-bit) |
| Model | Micro-Star International Co., Ltd. MS-7D69 |
| Motherboard | Micro-Star International Co., Ltd. MEG X670E ACE (MS-7D69) |
| Power Plan | Ultimate Performance |
| CPU Information | |
|---|---|
| Name | AMD Ryzen 9 9900X |
| Topology | 1 Processor, 12 Cores, 24 Threads |
| Identifier | AuthenticAMD Family 26 Model 68 Stepping 0 |
| Base Frequency | 4.40 GHz |
| Cluster 1 | 12 Cores |
| Memory Information | |
|---|---|
| Size | 48.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
7162
1.33 KIPS |
|
|
Image Classification (HP)
|
100% |
7358
1.37 KIPS |
|
|
Image Classification (Q)
|
100% |
18576
3.45 KIPS |
|
|
Image Segmentation (SP)
|
100% |
9039
146.5 IPS |
|
|
Image Segmentation (HP)
|
100% |
9367
151.9 IPS |
|
|
Image Segmentation (Q)
|
99% |
26240
425.4 IPS |
|
|
Pose Estimation (SP)
|
100% |
25624
29.9 IPS |
|
|
Pose Estimation (HP)
|
100% |
25779
30.1 IPS |
|
|
Pose Estimation (Q)
|
98% |
98531
115.4 IPS |
|
|
Object Detection (SP)
|
100% |
8805
698.4 IPS |
|
|
Object Detection (HP)
|
100% |
8346
662.0 IPS |
|
|
Object Detection (Q)
|
88% |
20194
1.62 KIPS |
|
|
Face Detection (SP)
|
100% |
19448
231.1 IPS |
|
|
Face Detection (HP)
|
100% |
19857
235.9 IPS |
|
|
Face Detection (Q)
|
100% |
53615
637.1 IPS |
|
|
Depth Estimation (SP)
|
100% |
22042
169.8 IPS |
|
|
Depth Estimation (HP)
|
99% |
22151
170.7 IPS |
|
|
Depth Estimation (Q)
|
88% |
62205
484.1 IPS |
|
|
Style Transfer (SP)
|
100% |
66764
85.8 IPS |
|
|
Style Transfer (HP)
|
100% |
66937
86.0 IPS |
|
|
Style Transfer (Q)
|
98% |
240695
310.4 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
13166
486.1 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
13156
485.8 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
36239
1.34 KIPS |
|
|
Text Classification (SP)
|
100% |
4473
5.97 KIPS |
|
|
Text Classification (HP)
|
100% |
4712
6.29 KIPS |
|
|
Text Classification (Q)
|
92% |
5919
7.95 KIPS |
|
|
Machine Translation (SP)
|
100% |
8831
152.1 IPS |
|
|
Machine Translation (HP)
|
100% |
8982
154.7 IPS |
|
|
Machine Translation (Q)
|
100% |
9958
171.5 IPS |