| User | 98Fengyu |
| Upload Date | February 01 2026 01:20 AM |
| Views | 14 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | CPU |
| Device | 13th Gen Intel(R) Core(TM) i5-13400TEF |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 (64-bit) |
| Model | Gigabyte Technology Co., Ltd. B760M D2HX SI DDR4 |
| Motherboard | Gigabyte Technology Co., Ltd. B760M D2HX SI DDR4 |
| CPU Information | |
|---|---|
| Name | 13th Gen Intel(R) Core(TM) i5-13400TEF |
| Topology | 1 Processor, 10 Cores, 16 Threads |
| Identifier | GenuineIntel Family 6 Model 191 Stepping 2 |
| Base Frequency | 1.30 GHz |
| Cluster 1 | 6 Cores |
| Cluster 2 | 4 Cores |
| Memory Information | |
|---|---|
| Size | 16.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
2152
400.1 IPS |
|
|
Image Classification (HP)
|
100% |
2295
426.7 IPS |
|
|
Image Classification (Q)
|
100% |
5250
976.3 IPS |
|
|
Image Segmentation (SP)
|
100% |
2917
47.3 IPS |
|
|
Image Segmentation (HP)
|
100% |
2841
46.1 IPS |
|
|
Image Segmentation (Q)
|
99% |
5574
90.4 IPS |
|
|
Pose Estimation (SP)
|
100% |
4205
4.91 IPS |
|
|
Pose Estimation (HP)
|
100% |
4258
4.97 IPS |
|
|
Pose Estimation (Q)
|
96% |
15535
18.2 IPS |
|
|
Object Detection (SP)
|
100% |
2176
172.6 IPS |
|
|
Object Detection (HP)
|
100% |
2294
182.0 IPS |
|
|
Object Detection (Q)
|
88% |
5518
442.3 IPS |
|
|
Face Detection (SP)
|
100% |
5747
68.3 IPS |
|
|
Face Detection (HP)
|
100% |
5643
67.0 IPS |
|
|
Face Detection (Q)
|
100% |
12745
151.4 IPS |
|
|
Depth Estimation (SP)
|
100% |
5467
42.1 IPS |
|
|
Depth Estimation (HP)
|
99% |
5455
42.0 IPS |
|
|
Depth Estimation (Q)
|
89% |
14265
111.0 IPS |
|
|
Style Transfer (SP)
|
100% |
12539
16.1 IPS |
|
|
Style Transfer (HP)
|
100% |
12816
16.5 IPS |
|
|
Style Transfer (Q)
|
98% |
44320
57.2 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
2523
93.2 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
2809
103.7 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
8493
314.5 IPS |
|
|
Text Classification (SP)
|
100% |
2104
2.81 KIPS |
|
|
Text Classification (HP)
|
100% |
2109
2.81 KIPS |
|
|
Text Classification (Q)
|
92% |
3360
4.51 KIPS |
|
|
Machine Translation (SP)
|
100% |
3197
55.1 IPS |
|
|
Machine Translation (HP)
|
100% |
3165
54.5 IPS |
|
|
Machine Translation (Q)
|
100% |
3180
54.8 IPS |