| User | Isochrone |
| Upload Date | January 25 2026 05:13 PM |
| Views | 7 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | CPU |
| Device | AMD Ryzen 9 5950X 16-Core Processor |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | Micro-Star International Co., Ltd. MS-7B89 |
| Motherboard | Micro-Star International Co., Ltd. B450M MORTAR MAX (MS-7B89) |
| Power Plan | AMD Ryzen Balanced |
| CPU Information | |
|---|---|
| Name | AMD Ryzen 9 5950X |
| Topology | 1 Processor, 16 Cores, 32 Threads |
| Identifier | AuthenticAMD Family 25 Model 33 Stepping 2 |
| Base Frequency | 3.40 GHz |
| Cluster 1 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 64.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
3183
592.0 IPS |
|
|
Image Classification (HP)
|
100% |
3098
576.1 IPS |
|
|
Image Classification (Q)
|
100% |
5317
988.9 IPS |
|
|
Image Segmentation (SP)
|
100% |
3508
56.9 IPS |
|
|
Image Segmentation (HP)
|
100% |
4168
67.6 IPS |
|
|
Image Segmentation (Q)
|
99% |
7997
130.0 IPS |
|
|
Pose Estimation (SP)
|
100% |
6081
7.10 IPS |
|
|
Pose Estimation (HP)
|
100% |
6095
7.11 IPS |
|
|
Pose Estimation (Q)
|
94% |
18982
22.3 IPS |
|
|
Object Detection (SP)
|
100% |
3243
257.2 IPS |
|
|
Object Detection (HP)
|
100% |
3346
265.4 IPS |
|
|
Object Detection (Q)
|
87% |
5922
475.0 IPS |
|
|
Face Detection (SP)
|
100% |
7963
94.6 IPS |
|
|
Face Detection (HP)
|
100% |
7830
93.0 IPS |
|
|
Face Detection (Q)
|
97% |
17845
212.8 IPS |
|
|
Depth Estimation (SP)
|
100% |
7696
59.3 IPS |
|
|
Depth Estimation (HP)
|
99% |
7977
61.5 IPS |
|
|
Depth Estimation (Q)
|
81% |
17844
140.7 IPS |
|
|
Style Transfer (SP)
|
100% |
23535
30.3 IPS |
|
|
Style Transfer (HP)
|
100% |
23492
30.2 IPS |
|
|
Style Transfer (Q)
|
98% |
55707
71.8 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
4750
175.4 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
4802
177.3 IPS |
|
|
Image Super-Resolution (Q)
|
98% |
9900
366.7 IPS |
|
|
Text Classification (SP)
|
100% |
2238
2.99 KIPS |
|
|
Text Classification (HP)
|
100% |
2182
2.91 KIPS |
|
|
Text Classification (Q)
|
91% |
270
362.6 IPS |
|
|
Machine Translation (SP)
|
100% |
2319
39.9 IPS |
|
|
Machine Translation (HP)
|
100% |
2108
36.3 IPS |
|
|
Machine Translation (Q)
|
100% |
2125
36.6 IPS |