| User | Nerdbench |
| Upload Date | January 22 2026 03:02 PM |
| Views | 6 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | NPU |
| Device | Intel(R) AI Boost |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | GEEKOM NX16AM |
| Motherboard | Default string NX16A |
| Power Plan | High Performance Mode |
| CPU Information | |
|---|---|
| Name | Intel Core Ultra 9 185H |
| Topology | 1 Processor, 16 Cores, 22 Threads |
| Identifier | GenuineIntel Family 6 Model 170 Stepping 4 |
| Base Frequency | 2.50 GHz |
| Cluster 1 | 6 Cores |
| Cluster 2 | 10 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
1717
319.4 IPS |
|
|
Image Classification (HP)
|
100% |
6495
1.21 KIPS |
|
|
Image Classification (Q)
|
100% |
9251
1.72 KIPS |
|
|
Image Segmentation (SP)
|
100% |
2742
44.4 IPS |
|
|
Image Segmentation (HP)
|
100% |
2473
40.1 IPS |
|
|
Image Segmentation (Q)
|
99% |
2985
48.4 IPS |
|
|
Pose Estimation (SP)
|
100% |
4777
5.57 IPS |
|
|
Pose Estimation (HP)
|
100% |
29848
34.8 IPS |
|
|
Pose Estimation (Q)
|
96% |
65956
77.3 IPS |
|
|
Object Detection (SP)
|
100% |
1745
138.4 IPS |
|
|
Object Detection (HP)
|
100% |
5572
442.0 IPS |
|
|
Object Detection (Q)
|
88% |
9458
758.2 IPS |
|
|
Face Detection (SP)
|
100% |
5347
63.5 IPS |
|
|
Face Detection (HP)
|
100% |
16519
196.3 IPS |
|
|
Face Detection (Q)
|
100% |
30155
358.3 IPS |
|
|
Depth Estimation (SP)
|
100% |
4967
38.3 IPS |
|
|
Depth Estimation (HP)
|
99% |
17574
135.4 IPS |
|
|
Depth Estimation (Q)
|
88% |
32872
255.8 IPS |
|
|
Style Transfer (SP)
|
100% |
14163
18.2 IPS |
|
|
Style Transfer (HP)
|
100% |
50103
64.4 IPS |
|
|
Style Transfer (Q)
|
98% |
90195
116.3 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
2440
90.1 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
14552
537.3 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
28414
1.05 KIPS |
|
|
Text Classification (SP)
|
100% |
2080
2.78 KIPS |
|
|
Text Classification (HP)
|
100% |
1980
2.64 KIPS |
|
|
Text Classification (Q)
|
92% |
1982
2.66 KIPS |
|
|
Machine Translation (SP)
|
100% |
2282
39.3 IPS |
|
|
Machine Translation (HP)
|
100% |
4285
73.8 IPS |
|
|
Machine Translation (Q)
|
100% |
4372
75.3 IPS |