| Upload Date | January 21 2026 10:02 AM |
| Views | 5 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 5060 Ti |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 10 (64-bit) |
| Model | Micro-Star International Co., Ltd. MS-7D99 |
| Motherboard | Micro-Star International Co., Ltd. PRO B760M-A WIFI DDR4 II (MS-7D99) |
| CPU Information | |
|---|---|
| Name | Intel Core i5-14600KF |
| Topology | 1 Processor, 14 Cores, 20 Threads |
| Identifier | GenuineIntel Family 6 Model 183 Stepping 1 |
| Base Frequency | 3.50 GHz |
| Cluster 1 | 6 Cores |
| Cluster 2 | 8 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
8950
1.66 KIPS |
|
|
Image Classification (HP)
|
100% |
15249
2.84 KIPS |
|
|
Image Classification (Q)
|
100% |
8197
1.52 KIPS |
|
|
Image Segmentation (SP)
|
100% |
14944
242.3 IPS |
|
|
Image Segmentation (HP)
|
100% |
21172
343.2 IPS |
|
|
Image Segmentation (Q)
|
98% |
13842
225.1 IPS |
|
|
Pose Estimation (SP)
|
100% |
118504
138.3 IPS |
|
|
Pose Estimation (HP)
|
100% |
371741
433.8 IPS |
|
|
Pose Estimation (Q)
|
96% |
107703
126.2 IPS |
|
|
Object Detection (SP)
|
100% |
10855
861.0 IPS |
|
|
Object Detection (HP)
|
100% |
18109
1.44 KIPS |
|
|
Object Detection (Q)
|
83% |
9363
756.5 IPS |
|
|
Face Detection (SP)
|
100% |
27355
325.0 IPS |
|
|
Face Detection (HP)
|
100% |
42156
500.9 IPS |
|
|
Face Detection (Q)
|
97% |
24219
288.8 IPS |
|
|
Depth Estimation (SP)
|
100% |
51914
400.0 IPS |
|
|
Depth Estimation (HP)
|
99% |
108095
832.8 IPS |
|
|
Depth Estimation (Q)
|
78% |
42224
337.0 IPS |
|
|
Style Transfer (SP)
|
100% |
170812
219.6 IPS |
|
|
Style Transfer (HP)
|
100% |
570374
733.2 IPS |
|
|
Style Transfer (Q)
|
98% |
148343
191.3 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
32675
1.21 KIPS |
|
|
Image Super-Resolution (HP)
|
100% |
60950
2.25 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
24542
908.7 IPS |
|
|
Text Classification (SP)
|
100% |
3532
4.71 KIPS |
|
|
Text Classification (HP)
|
100% |
4324
5.77 KIPS |
|
|
Text Classification (Q)
|
97% |
2215
2.97 KIPS |
|
|
Machine Translation (SP)
|
100% |
4453
76.7 IPS |
|
|
Machine Translation (HP)
|
100% |
4903
84.5 IPS |
|
|
Machine Translation (Q)
|
70% |
1778
33.3 IPS |