| User | Nerdbench |
| Upload Date | January 15 2026 10:27 PM |
| Views | 5 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | NPU |
| Device | Intel(R) AI Boost |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | GEEKOM NX14CM |
| Motherboard | GEEKOM NX14C |
| Power Plan | Balanced Mode |
| CPU Information | |
|---|---|
| Name | Intel Core Ultra 9 185H |
| Topology | 1 Processor, 16 Cores, 22 Threads |
| Identifier | GenuineIntel Family 6 Model 170 Stepping 4 |
| Base Frequency | 2.50 GHz |
| Cluster 1 | 6 Cores |
| Cluster 2 | 10 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
1515
281.8 IPS |
|
|
Image Classification (HP)
|
100% |
6352
1.18 KIPS |
|
|
Image Classification (Q)
|
100% |
8764
1.63 KIPS |
|
|
Image Segmentation (SP)
|
100% |
2550
41.3 IPS |
|
|
Image Segmentation (HP)
|
100% |
2469
40.0 IPS |
|
|
Image Segmentation (Q)
|
99% |
2989
48.5 IPS |
|
|
Pose Estimation (SP)
|
100% |
4809
5.61 IPS |
|
|
Pose Estimation (HP)
|
100% |
29615
34.6 IPS |
|
|
Pose Estimation (Q)
|
96% |
65527
76.8 IPS |
|
|
Object Detection (SP)
|
100% |
1454
115.3 IPS |
|
|
Object Detection (HP)
|
100% |
5395
427.9 IPS |
|
|
Object Detection (Q)
|
88% |
9058
726.2 IPS |
|
|
Face Detection (SP)
|
100% |
4755
56.5 IPS |
|
|
Face Detection (HP)
|
100% |
15942
189.4 IPS |
|
|
Face Detection (Q)
|
100% |
29741
353.4 IPS |
|
|
Depth Estimation (SP)
|
100% |
4621
35.6 IPS |
|
|
Depth Estimation (HP)
|
99% |
17789
137.1 IPS |
|
|
Depth Estimation (Q)
|
88% |
32512
253.0 IPS |
|
|
Style Transfer (SP)
|
100% |
13580
17.5 IPS |
|
|
Style Transfer (HP)
|
100% |
49795
64.0 IPS |
|
|
Style Transfer (Q)
|
98% |
91028
117.4 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
2097
77.4 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
14164
523.0 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
27233
1.01 KIPS |
|
|
Text Classification (SP)
|
100% |
1796
2.40 KIPS |
|
|
Text Classification (HP)
|
100% |
1797
2.40 KIPS |
|
|
Text Classification (Q)
|
92% |
1835
2.46 KIPS |
|
|
Machine Translation (SP)
|
100% |
1684
29.0 IPS |
|
|
Machine Translation (HP)
|
100% |
4093
70.5 IPS |
|
|
Machine Translation (Q)
|
100% |
4162
71.7 IPS |