| User | ridelisle |
| Upload Date | January 12 2026 07:49 PM |
| Views | 7 |
| Notes | Windows 11 power mode set to "Best Performance". |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | NPU |
| Device | Intel(R) AI Boost |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Enterprise (64-bit) |
| Model | LENOVO 21QV003FUS |
| Motherboard | LENOVO 21QV003FUS |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 7 265H |
| Topology | 1 Processor, 16 Cores |
| Identifier | GenuineIntel Family 6 Model 197 Stepping 2 |
| Base Frequency | 2.20 GHz |
| Cluster 1 | 6 Cores |
| Cluster 2 | 10 Cores |
| Memory Information | |
|---|---|
| Size | 64.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
1877
349.1 IPS |
|
|
Image Classification (HP)
|
100% |
6813
1.27 KIPS |
|
|
Image Classification (Q)
|
100% |
9382
1.74 KIPS |
|
|
Image Segmentation (SP)
|
100% |
3109
50.4 IPS |
|
|
Image Segmentation (HP)
|
100% |
2817
45.7 IPS |
|
|
Image Segmentation (Q)
|
99% |
3545
57.5 IPS |
|
|
Pose Estimation (SP)
|
100% |
5933
6.92 IPS |
|
|
Pose Estimation (HP)
|
100% |
34802
40.6 IPS |
|
|
Pose Estimation (Q)
|
96% |
75067
87.9 IPS |
|
|
Object Detection (SP)
|
100% |
1890
149.9 IPS |
|
|
Object Detection (HP)
|
100% |
5921
469.6 IPS |
|
|
Object Detection (Q)
|
87% |
9570
768.1 IPS |
|
|
Face Detection (SP)
|
100% |
6757
80.3 IPS |
|
|
Face Detection (HP)
|
100% |
17168
204.0 IPS |
|
|
Face Detection (Q)
|
100% |
32957
391.6 IPS |
|
|
Depth Estimation (SP)
|
100% |
6212
47.9 IPS |
|
|
Depth Estimation (HP)
|
99% |
18045
139.0 IPS |
|
|
Depth Estimation (Q)
|
88% |
33095
257.5 IPS |
|
|
Style Transfer (SP)
|
100% |
18555
23.9 IPS |
|
|
Style Transfer (HP)
|
100% |
53118
68.3 IPS |
|
|
Style Transfer (Q)
|
98% |
95497
123.1 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
2816
104.0 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
14040
518.4 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
23904
885.2 IPS |
|
|
Text Classification (SP)
|
100% |
1475
1.97 KIPS |
|
|
Text Classification (HP)
|
100% |
1941
2.59 KIPS |
|
|
Text Classification (Q)
|
92% |
1954
2.63 KIPS |
|
|
Machine Translation (SP)
|
100% |
2438
42.0 IPS |
|
|
Machine Translation (HP)
|
100% |
4123
71.0 IPS |
|
|
Machine Translation (Q)
|
100% |
4162
71.7 IPS |