| User | Nerdbench |
| Upload Date | January 11 2026 05:18 PM |
| Views | 3 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 5070 Laptop GPU |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | Micro Computer (HK) Tech Limited AtomMan Series |
| Motherboard | Meigao Innovation Technology (Shen Zhen) Co.,Ltd RPDMB |
| Power Plan | Ausbalanciert |
| CPU Information | |
|---|---|
| Name | Intel Core i9-14900HX |
| Topology | 1 Processor, 24 Cores, 32 Threads |
| Identifier | GenuineIntel Family 6 Model 183 Stepping 1 |
| Base Frequency | 2.20 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
8665
1.61 KIPS |
|
|
Image Classification (HP)
|
100% |
16706
3.11 KIPS |
|
|
Image Classification (Q)
|
100% |
7868
1.46 KIPS |
|
|
Image Segmentation (SP)
|
100% |
13576
220.1 IPS |
|
|
Image Segmentation (HP)
|
100% |
19229
311.7 IPS |
|
|
Image Segmentation (Q)
|
98% |
12425
202.0 IPS |
|
|
Pose Estimation (SP)
|
100% |
106457
124.2 IPS |
|
|
Pose Estimation (HP)
|
100% |
331207
386.5 IPS |
|
|
Pose Estimation (Q)
|
96% |
97817
114.6 IPS |
|
|
Object Detection (SP)
|
100% |
10557
837.4 IPS |
|
|
Object Detection (HP)
|
100% |
18964
1.50 KIPS |
|
|
Object Detection (Q)
|
83% |
9233
746.0 IPS |
|
|
Face Detection (SP)
|
100% |
23137
274.9 IPS |
|
|
Face Detection (HP)
|
100% |
39919
474.3 IPS |
|
|
Face Detection (Q)
|
97% |
21531
256.7 IPS |
|
|
Depth Estimation (SP)
|
100% |
40564
312.5 IPS |
|
|
Depth Estimation (HP)
|
99% |
95965
739.4 IPS |
|
|
Depth Estimation (Q)
|
78% |
33857
270.2 IPS |
|
|
Style Transfer (SP)
|
100% |
150759
193.8 IPS |
|
|
Style Transfer (HP)
|
100% |
475343
611.1 IPS |
|
|
Style Transfer (Q)
|
98% |
127857
164.9 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
24879
918.7 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
55964
2.07 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
23570
872.8 IPS |
|
|
Text Classification (SP)
|
100% |
3738
4.99 KIPS |
|
|
Text Classification (HP)
|
100% |
4644
6.20 KIPS |
|
|
Text Classification (Q)
|
97% |
2339
3.13 KIPS |
|
|
Machine Translation (SP)
|
100% |
4570
78.7 IPS |
|
|
Machine Translation (HP)
|
100% |
5100
87.8 IPS |
|
|
Machine Translation (Q)
|
70% |
1783
33.4 IPS |