| User | ShowXTech |
| Upload Date | January 11 2026 01:36 PM |
| Views | 4 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | GPU |
| Device | Intel(R) Arc(TM) 140T GPU (48GB) (iGPU) |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | AZW GTi15 |
| Motherboard | AZW GTi15 |
| Power Plan | High Performance Mode |
| CPU Information | |
|---|---|
| Name | Intel Core Ultra 9 285H |
| Topology | 1 Processor, 16 Cores |
| Identifier | GenuineIntel Family 6 Model 197 Stepping 2 |
| Base Frequency | 3.70 GHz |
| Cluster 1 | 6 Cores |
| Cluster 2 | 10 Cores |
| Memory Information | |
|---|---|
| Size | 96.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
5805
1.08 KIPS |
|
|
Image Classification (HP)
|
100% |
9864
1.83 KIPS |
|
|
Image Classification (Q)
|
100% |
12448
2.31 KIPS |
|
|
Image Segmentation (SP)
|
100% |
7092
115.0 IPS |
|
|
Image Segmentation (HP)
|
100% |
17676
286.5 IPS |
|
|
Image Segmentation (Q)
|
99% |
19884
322.3 IPS |
|
|
Pose Estimation (SP)
|
100% |
19579
22.8 IPS |
|
|
Pose Estimation (HP)
|
100% |
72605
84.7 IPS |
|
|
Pose Estimation (Q)
|
97% |
138612
162.3 IPS |
|
|
Object Detection (SP)
|
100% |
5695
451.7 IPS |
|
|
Object Detection (HP)
|
100% |
11777
934.2 IPS |
|
|
Object Detection (Q)
|
88% |
14795
1.19 KIPS |
|
|
Face Detection (SP)
|
100% |
10049
119.4 IPS |
|
|
Face Detection (HP)
|
100% |
21073
250.4 IPS |
|
|
Face Detection (Q)
|
100% |
29590
351.6 IPS |
|
|
Depth Estimation (SP)
|
100% |
18496
142.5 IPS |
|
|
Depth Estimation (HP)
|
99% |
39085
301.1 IPS |
|
|
Depth Estimation (Q)
|
89% |
49314
383.3 IPS |
|
|
Style Transfer (SP)
|
100% |
49573
63.7 IPS |
|
|
Style Transfer (HP)
|
100% |
123790
159.1 IPS |
|
|
Style Transfer (Q)
|
98% |
198643
256.2 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
8028
296.4 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
26049
961.9 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
33340
1.23 KIPS |
|
|
Text Classification (SP)
|
100% |
2766
3.69 KIPS |
|
|
Text Classification (HP)
|
100% |
3558
4.75 KIPS |
|
|
Text Classification (Q)
|
92% |
2347
3.15 KIPS |
|
|
Machine Translation (SP)
|
100% |
3027
52.1 IPS |
|
|
Machine Translation (HP)
|
98% |
4386
75.8 IPS |
|
|
Machine Translation (Q)
|
100% |
4405
75.9 IPS |