| User | abhimanbhau |
| Upload Date | January 09 2026 04:14 AM |
| Views | 6 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | Intel(R) Arc(TM) 140V GPU RI (16GB) |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Home (64-bit) |
| Model | SAMSUNG ELECTRONICS CO., LTD. 960XHA |
| Motherboard | SAMSUNG ELECTRONICS CO., LTD. NP960XHA-KG3US |
| Power Plan | SAMSUNG MODE |
| CPU Information | |
|---|---|
| Name | Intel Core Ultra 7 258V |
| Topology | 1 Processor, 8 Cores |
| Identifier | GenuineIntel Family 6 Model 189 Stepping 1 |
| Base Frequency | 2.20 GHz |
| Cluster 1 | 4 Cores |
| Cluster 2 | 4 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
4512
839.0 IPS |
|
|
Image Classification (HP)
|
100% |
6130
1.14 KIPS |
|
|
Image Classification (Q)
|
100% |
3330
619.3 IPS |
|
|
Image Segmentation (SP)
|
100% |
7347
119.1 IPS |
|
|
Image Segmentation (HP)
|
100% |
14935
242.1 IPS |
|
|
Image Segmentation (Q)
|
98% |
5194
84.5 IPS |
|
|
Pose Estimation (SP)
|
100% |
12490
14.6 IPS |
|
|
Pose Estimation (HP)
|
100% |
32540
38.0 IPS |
|
|
Pose Estimation (Q)
|
96% |
11276
13.2 IPS |
|
|
Object Detection (SP)
|
100% |
5673
450.0 IPS |
|
|
Object Detection (HP)
|
100% |
9780
775.7 IPS |
|
|
Object Detection (Q)
|
88% |
4389
352.0 IPS |
|
|
Face Detection (SP)
|
100% |
10417
123.8 IPS |
|
|
Face Detection (HP)
|
100% |
20271
240.9 IPS |
|
|
Face Detection (Q)
|
97% |
7516
89.6 IPS |
|
|
Depth Estimation (SP)
|
100% |
21352
164.5 IPS |
|
|
Depth Estimation (HP)
|
99% |
43172
332.6 IPS |
|
|
Depth Estimation (Q)
|
77% |
14001
111.9 IPS |
|
|
Style Transfer (SP)
|
100% |
56267
72.3 IPS |
|
|
Style Transfer (HP)
|
100% |
185444
238.4 IPS |
|
|
Style Transfer (Q)
|
98% |
39090
50.4 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
9908
365.9 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
20272
748.6 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
5477
202.8 IPS |
|
|
Text Classification (SP)
|
100% |
1246
1.66 KIPS |
|
|
Text Classification (HP)
|
100% |
1555
2.08 KIPS |
|
|
Text Classification (Q)
|
97% |
784
1.05 KIPS |
|
|
Machine Translation (SP)
|
100% |
3379
58.2 IPS |
|
|
Machine Translation (HP)
|
100% |
3531
60.8 IPS |
|
|
Machine Translation (Q)
|
70% |
1357
25.4 IPS |