| Upload Date | January 05 2026 10:33 PM |
| Views | 3 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | CPU |
| Device | Intel(R) Core(TM) Ultra 9 285H |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro for Workstations (64-bit) |
| Model | ASUSTeK COMPUTER INC. NUC15CRSU9 |
| Motherboard | ASUSTeK COMPUTER INC. NUC15CRSU9 |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | Intel Core Ultra 9 285H |
| Topology | 1 Processor, 16 Cores |
| Identifier | GenuineIntel Family 6 Model 197 Stepping 2 |
| Base Frequency | 2.90 GHz |
| Cluster 1 | 6 Cores |
| Cluster 2 | 10 Cores |
| Memory Information | |
|---|---|
| Size | 48.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
2375
441.7 IPS |
|
|
Image Classification (HP)
|
100% |
2711
504.1 IPS |
|
|
Image Classification (Q)
|
100% |
6493
1.21 KIPS |
|
|
Image Segmentation (SP)
|
100% |
3283
53.2 IPS |
|
|
Image Segmentation (HP)
|
100% |
2109
34.2 IPS |
|
|
Image Segmentation (Q)
|
99% |
6611
107.2 IPS |
|
|
Pose Estimation (SP)
|
100% |
7085
8.27 IPS |
|
|
Pose Estimation (HP)
|
100% |
6165
7.19 IPS |
|
|
Pose Estimation (Q)
|
96% |
22906
26.8 IPS |
|
|
Object Detection (SP)
|
100% |
1937
153.7 IPS |
|
|
Object Detection (HP)
|
100% |
1829
145.0 IPS |
|
|
Object Detection (Q)
|
88% |
5575
446.9 IPS |
|
|
Face Detection (SP)
|
100% |
5045
60.0 IPS |
|
|
Face Detection (HP)
|
100% |
9714
115.4 IPS |
|
|
Face Detection (Q)
|
100% |
19121
227.2 IPS |
|
|
Depth Estimation (SP)
|
100% |
7379
56.9 IPS |
|
|
Depth Estimation (HP)
|
99% |
5667
43.7 IPS |
|
|
Depth Estimation (Q)
|
89% |
18778
146.0 IPS |
|
|
Style Transfer (SP)
|
100% |
18697
24.0 IPS |
|
|
Style Transfer (HP)
|
100% |
13247
17.0 IPS |
|
|
Style Transfer (Q)
|
98% |
66941
86.3 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
3625
133.9 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
4730
174.7 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
15846
586.8 IPS |
|
|
Text Classification (SP)
|
100% |
3409
4.55 KIPS |
|
|
Text Classification (HP)
|
100% |
3314
4.42 KIPS |
|
|
Text Classification (Q)
|
92% |
5506
7.40 KIPS |
|
|
Machine Translation (SP)
|
100% |
3576
61.6 IPS |
|
|
Machine Translation (HP)
|
100% |
4717
81.3 IPS |
|
|
Machine Translation (Q)
|
100% |
2649
45.6 IPS |