| Upload Date | January 04 2026 09:39 AM |
| Views | 8 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | NPU |
| Device | Intel(R) AI Boost |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 (64-bit) |
| Model | Micro-Star International Co., Ltd. Prestige 13 AI+ Evo A2VMG |
| Motherboard | Micro-Star International Co., Ltd. MS-13Q3 |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 9 288V |
| Topology | 1 Processor, 8 Cores |
| Identifier | GenuineIntel Family 6 Model 189 Stepping 1 |
| Base Frequency | 3.30 GHz |
| Cluster 1 | 4 Cores |
| Cluster 2 | 4 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
1829
340.1 IPS |
|
|
Image Classification (HP)
|
100% |
15982
2.97 KIPS |
|
|
Image Classification (Q)
|
100% |
22577
4.20 KIPS |
|
|
Image Segmentation (SP)
|
100% |
2088
33.8 IPS |
|
|
Image Segmentation (HP)
|
100% |
18841
305.4 IPS |
|
|
Image Segmentation (Q)
|
99% |
33295
539.7 IPS |
|
|
Pose Estimation (SP)
|
100% |
2928
3.42 IPS |
|
|
Pose Estimation (HP)
|
100% |
115356
134.6 IPS |
|
|
Pose Estimation (Q)
|
96% |
248781
291.4 IPS |
|
|
Object Detection (SP)
|
100% |
1738
137.9 IPS |
|
|
Object Detection (HP)
|
100% |
17838
1.41 KIPS |
|
|
Object Detection (Q)
|
88% |
29530
2.37 KIPS |
|
|
Face Detection (SP)
|
100% |
5131
61.0 IPS |
|
|
Face Detection (HP)
|
100% |
39437
468.6 IPS |
|
|
Face Detection (Q)
|
100% |
97601
1.16 KIPS |
|
|
Depth Estimation (SP)
|
100% |
4514
34.8 IPS |
|
|
Depth Estimation (HP)
|
92% |
82441
639.5 IPS |
|
|
Depth Estimation (Q)
|
88% |
174521
1.36 KIPS |
|
|
Style Transfer (SP)
|
100% |
9628
12.4 IPS |
|
|
Style Transfer (HP)
|
100% |
242762
312.1 IPS |
|
|
Style Transfer (Q)
|
98% |
382293
493.0 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
2019
74.5 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
35103
1.30 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
91548
3.39 KIPS |
|
|
Text Classification (SP)
|
100% |
1972
2.63 KIPS |
|
|
Text Classification (HP)
|
100% |
3274
4.37 KIPS |
|
|
Text Classification (Q)
|
92% |
3515
4.72 KIPS |
|
|
Machine Translation (SP)
|
100% |
3224
55.5 IPS |
|
|
Machine Translation (HP)
|
100% |
11028
190.0 IPS |
|
|
Machine Translation (Q)
|
100% |
10895
187.7 IPS |