| User | anandhu-s |
| Upload Date | December 26 2025 06:33 AM |
| Views | 6 |
| AI Information | |
|---|---|
| Framework | TensorFlow Lite |
| Backend | NNAPI |
| Device | ARM ARMv8 |
| System Information | |
|---|---|
| Operating System | Android 14 |
| Model | motorola moto g14 |
| Model ID | motorola moto g14 |
| Motherboard | cancun |
| Governor | uscfreq |
| CPU Information | |
|---|---|
| Name | ARM ARMv8 |
| Topology | 1 Processor, 8 Cores |
| Identifier | ARM implementer 65 architecture 8 variant 3 part 3338 revision 1 |
| Base Frequency | 1.82 GHz |
| Cluster 1 | 6 Cores @ 1.82 GHz |
| Cluster 2 | 2 Cores @ 1.95 GHz |
| Memory Information | |
|---|---|
| Size | 3.66 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
91
16.9 IPS |
|
|
Image Classification (HP)
|
100% |
133
24.8 IPS |
|
|
Image Classification (Q)
|
99% |
115
21.4 IPS |
|
|
Image Segmentation (SP)
|
100% |
117
1.90 IPS |
|
|
Image Segmentation (HP)
|
100% |
177
2.87 IPS |
|
|
Image Segmentation (Q)
|
98% |
163
2.65 IPS |
|
|
Pose Estimation (SP)
|
100% |
526
0.61 IPS |
|
|
Pose Estimation (HP)
|
100% |
286
0.33 IPS |
|
|
Pose Estimation (Q)
|
96% |
485
0.57 IPS |
|
|
Object Detection (SP)
|
100% |
46
3.68 IPS |
|
|
Object Detection (HP)
|
100% |
47
3.72 IPS |
|
|
Object Detection (Q)
|
87% |
93
7.44 IPS |
|
|
Face Detection (SP)
|
100% |
299
3.55 IPS |
|
|
Face Detection (HP)
|
100% |
369
4.38 IPS |
|
|
Face Detection (Q)
|
97% |
227
2.71 IPS |
|
|
Depth Estimation (SP)
|
100% |
411
3.17 IPS |
|
|
Depth Estimation (HP)
|
98% |
323
2.50 IPS |
|
|
Depth Estimation (Q)
|
66% |
386
3.41 IPS |
|
|
Style Transfer (SP)
|
100% |
364
0.47 IPS |
|
|
Style Transfer (HP)
|
100% |
183
0.24 IPS |
|
|
Style Transfer (Q)
|
98% |
644
0.83 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
231
8.54 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
166
6.13 IPS |
|
|
Image Super-Resolution (Q)
|
97% |
239
8.87 IPS |
|
|
Text Classification (SP)
|
100% |
21
28.0 IPS |
|
|
Text Classification (HP)
|
100% |
66
88.5 IPS |
|
|
Text Classification (Q)
|
93% |
34
46.3 IPS |
|
|
Machine Translation (SP)
|
100% |
77
1.33 IPS |
|
|
Machine Translation (HP)
|
100% |
115
1.98 IPS |
|
|
Machine Translation (Q)
|
55% |
56
1.49 IPS |