| User | KD8UXA |
| Upload Date | December 24 2025 12:51 PM |
| Views | 2 |
| AI Information | |
|---|---|
| Framework | TensorFlow Lite |
| Backend | GPU |
| Device | ARM ARMv8 |
| System Information | |
|---|---|
| Operating System | Android 14 |
| Model | motorola moto g stylus 5G (2022) |
| Model ID | motorola moto g stylus 5G (2022) |
| Motherboard | milanf |
| Governor | schedutil |
| CPU Information | |
|---|---|
| Name | ARM ARMv8 |
| Topology | 1 Processor, 8 Cores |
| Identifier | ARM implementer 65 architecture 8 variant 1 part 3393 revision 1 |
| Base Frequency | 1.80 GHz |
| Cluster 1 | 6 Cores @ 1.80 GHz |
| Cluster 2 | 2 Cores @ 2.21 GHz |
| Memory Information | |
|---|---|
| Size | 7.32 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
228
42.3 IPS |
|
|
Image Classification (HP)
|
100% |
337
62.7 IPS |
|
|
Image Classification (Q)
|
99% |
321
59.9 IPS |
|
|
Image Segmentation (SP)
|
100% |
327
5.29 IPS |
|
|
Image Segmentation (HP)
|
100% |
498
8.08 IPS |
|
|
Image Segmentation (Q)
|
98% |
464
7.55 IPS |
|
|
Pose Estimation (SP)
|
100% |
1319
1.54 IPS |
|
|
Pose Estimation (HP)
|
99% |
2226
2.60 IPS |
|
|
Pose Estimation (Q)
|
97% |
2188
2.56 IPS |
|
|
Object Detection (SP)
|
100% |
195
15.5 IPS |
|
|
Object Detection (HP)
|
99% |
281
22.3 IPS |
|
|
Object Detection (Q)
|
85% |
269
21.6 IPS |
|
|
Face Detection (SP)
|
100% |
630
7.49 IPS |
|
|
Face Detection (HP)
|
100% |
996
11.8 IPS |
|
|
Face Detection (Q)
|
97% |
903
10.8 IPS |
|
|
Depth Estimation (SP)
|
100% |
817
6.29 IPS |
|
|
Depth Estimation (HP)
|
98% |
1361
10.5 IPS |
|
|
Depth Estimation (Q)
|
65% |
1146
10.3 IPS |
|
|
Style Transfer (SP)
|
100% |
1798
2.31 IPS |
|
|
Style Transfer (HP)
|
100% |
3366
4.33 IPS |
|
|
Style Transfer (Q)
|
98% |
3209
4.14 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
313
11.6 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
503
18.6 IPS |
|
|
Image Super-Resolution (Q)
|
97% |
493
18.3 IPS |
|
|
Text Classification (SP)
|
35% |
12
117.9 IPS |
|
|
Text Classification (HP)
|
35% |
20
181.4 IPS |
|
|
Text Classification (Q)
|
35% |
20
180.0 IPS |
|
|
Machine Translation (SP)
|
100% |
141
2.43 IPS |
|
|
Machine Translation (HP)
|
97% |
181
3.13 IPS |
|
|
Machine Translation (Q)
|
64% |
148
3.04 IPS |