| User | Beamish |
| Upload Date | December 12 2025 04:15 PM |
| Views | 12 |
| AI Information | |
|---|---|
| Framework | TensorFlow Lite |
| Backend | CPU |
| Device | Qualcomm Snapdragon 888 |
| System Information | |
|---|---|
| Operating System | Android 13 |
| Model | Samsung Galaxy Z Flip3 |
| Model ID | samsung SM-F711B |
| Motherboard | lahaina |
| Governor | schedutil |
| CPU Information | |
|---|---|
| Name | ARM SM8350 |
| Topology | 1 Processor, 8 Cores |
| Identifier | ARM implementer 65 architecture 8 variant 1 part 3396 revision 0 |
| Base Frequency | 1.80 GHz |
| Cluster 1 | 4 Cores @ 1.80 GHz |
| Cluster 2 | 3 Cores @ 2.42 GHz |
| Cluster 3 | 1 Core @ 2.84 GHz |
| Memory Information | |
|---|---|
| Size | 7.22 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
221
41.0 IPS |
|
|
Image Classification (HP)
|
100% |
236
43.9 IPS |
|
|
Image Classification (Q)
|
100% |
624
116.1 IPS |
|
|
Image Segmentation (SP)
|
100% |
303
4.92 IPS |
|
|
Image Segmentation (HP)
|
100% |
301
4.88 IPS |
|
|
Image Segmentation (Q)
|
98% |
740
12.0 IPS |
|
|
Pose Estimation (SP)
|
100% |
1207
1.41 IPS |
|
|
Pose Estimation (HP)
|
100% |
1216
1.42 IPS |
|
|
Pose Estimation (Q)
|
84% |
1522
1.80 IPS |
|
|
Object Detection (SP)
|
100% |
233
18.5 IPS |
|
|
Object Detection (HP)
|
100% |
233
18.5 IPS |
|
|
Object Detection (Q)
|
83% |
615
49.6 IPS |
|
|
Face Detection (SP)
|
100% |
824
9.79 IPS |
|
|
Face Detection (HP)
|
100% |
821
9.76 IPS |
|
|
Face Detection (Q)
|
95% |
1512
18.0 IPS |
|
|
Depth Estimation (SP)
|
100% |
1085
8.36 IPS |
|
|
Depth Estimation (HP)
|
99% |
1113
8.57 IPS |
|
|
Depth Estimation (Q)
|
64% |
1422
13.0 IPS |
|
|
Style Transfer (SP)
|
89% |
1888
2.45 IPS |
|
|
Style Transfer (HP)
|
89% |
1937
2.51 IPS |
|
|
Style Transfer (Q)
|
98% |
3606
4.65 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
618
22.8 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
302
11.2 IPS |
|
|
Image Super-Resolution (Q)
|
97% |
627
23.2 IPS |
|
|
Text Classification (SP)
|
100% |
161
215.1 IPS |
|
|
Text Classification (HP)
|
100% |
161
214.5 IPS |
|
|
Text Classification (Q)
|
88% |
259
349.1 IPS |
|
|
Machine Translation (SP)
|
100% |
263
4.53 IPS |
|
|
Machine Translation (HP)
|
100% |
249
4.30 IPS |
|
|
Machine Translation (Q)
|
50% |
138
4.90 IPS |