| Upload Date | December 05 2025 01:56 AM |
| Views | 2 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | GPU |
| Device | Intel(R) Graphics (iGPU) |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 IoT Enterprise LTSC (64-bit) |
| Model | ONYX Healthcare Inc. Venus-4Series-T |
| Motherboard | ONYX Healthcare Inc Venus-4Series-T |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | Intel Core Ultra 5 125U |
| Topology | 1 Processor, 12 Cores, 14 Threads |
| Identifier | GenuineIntel Family 6 Model 170 Stepping 4 |
| Base Frequency | 3.60 GHz |
| Cluster 1 | 2 Cores |
| Cluster 2 | 10 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
2571
478.1 IPS |
|
|
Image Classification (HP)
|
100% |
4468
830.9 IPS |
|
|
Image Classification (Q)
|
100% |
5907
1.10 KIPS |
|
|
Image Segmentation (SP)
|
100% |
2007
32.5 IPS |
|
|
Image Segmentation (HP)
|
100% |
5530
89.6 IPS |
|
|
Image Segmentation (Q)
|
99% |
8428
136.6 IPS |
|
|
Pose Estimation (SP)
|
100% |
8109
9.46 IPS |
|
|
Pose Estimation (HP)
|
99% |
9474
11.1 IPS |
|
|
Pose Estimation (Q)
|
97% |
28837
33.8 IPS |
|
|
Object Detection (SP)
|
100% |
2377
188.6 IPS |
|
|
Object Detection (HP)
|
100% |
4352
345.2 IPS |
|
|
Object Detection (Q)
|
88% |
6895
552.6 IPS |
|
|
Face Detection (SP)
|
100% |
3974
47.2 IPS |
|
|
Face Detection (HP)
|
100% |
8103
96.3 IPS |
|
|
Face Detection (Q)
|
100% |
14363
170.7 IPS |
|
|
Depth Estimation (SP)
|
100% |
8708
67.1 IPS |
|
|
Depth Estimation (HP)
|
98% |
15883
122.8 IPS |
|
|
Depth Estimation (Q)
|
89% |
21742
169.0 IPS |
|
|
Style Transfer (SP)
|
100% |
20232
26.0 IPS |
|
|
Style Transfer (HP)
|
100% |
32217
41.4 IPS |
|
|
Style Transfer (Q)
|
98% |
66460
85.7 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
3665
135.3 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
6579
242.9 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
11623
430.4 IPS |
|
|
Text Classification (SP)
|
71% |
1125
1.63 KIPS |
|
|
Text Classification (HP)
|
71% |
1367
1.98 KIPS |
|
|
Text Classification (Q)
|
92% |
1387
1.86 KIPS |
|
|
Machine Translation (SP)
|
100% |
1251
21.5 IPS |
|
|
Machine Translation (HP)
|
98% |
1912
33.0 IPS |
|
|
Machine Translation (Q)
|
98% |
1922
33.2 IPS |