| Upload Date | December 04 2025 03:32 AM |
| Views | 2 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 5060 Laptop GPU |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Home (64-bit) |
| Model | ASUSTeK COMPUTER INC. ASUS TUF Gaming F16 FX608JMR_FX608JMR |
| Motherboard | ASUSTeK COMPUTER INC. FX608JMR |
| Power Plan | Performance |
| CPU Information | |
|---|---|
| Name | Intel Core i7-14650HX |
| Topology | 1 Processor, 16 Cores, 24 Threads |
| Identifier | GenuineIntel Family 6 Model 183 Stepping 1 |
| Base Frequency | 2.20 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 8 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
6252
1.16 KIPS |
|
|
Image Classification (HP)
|
100% |
13865
2.58 KIPS |
|
|
Image Classification (Q)
|
99% |
6125
1.14 KIPS |
|
|
Image Segmentation (SP)
|
100% |
13317
215.9 IPS |
|
|
Image Segmentation (HP)
|
100% |
21678
351.4 IPS |
|
|
Image Segmentation (Q)
|
98% |
12201
198.4 IPS |
|
|
Pose Estimation (SP)
|
100% |
80605
94.1 IPS |
|
|
Pose Estimation (HP)
|
100% |
247740
289.1 IPS |
|
|
Pose Estimation (Q)
|
96% |
71002
83.2 IPS |
|
|
Object Detection (SP)
|
100% |
8710
690.9 IPS |
|
|
Object Detection (HP)
|
100% |
16862
1.34 KIPS |
|
|
Object Detection (Q)
|
87% |
7702
618.1 IPS |
|
|
Face Detection (SP)
|
100% |
23368
277.7 IPS |
|
|
Face Detection (HP)
|
100% |
37744
448.5 IPS |
|
|
Face Detection (Q)
|
97% |
20559
245.1 IPS |
|
|
Depth Estimation (SP)
|
100% |
39693
305.8 IPS |
|
|
Depth Estimation (HP)
|
99% |
84044
647.5 IPS |
|
|
Depth Estimation (Q)
|
77% |
32215
257.6 IPS |
|
|
Style Transfer (SP)
|
100% |
124946
160.6 IPS |
|
|
Style Transfer (HP)
|
100% |
421274
541.6 IPS |
|
|
Style Transfer (Q)
|
98% |
102595
132.3 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
21420
790.9 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
44991
1.66 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
17614
652.2 IPS |
|
|
Text Classification (SP)
|
100% |
2791
3.73 KIPS |
|
|
Text Classification (HP)
|
100% |
3507
4.68 KIPS |
|
|
Text Classification (Q)
|
97% |
1740
2.33 KIPS |
|
|
Machine Translation (SP)
|
100% |
4365
75.2 IPS |
|
|
Machine Translation (HP)
|
100% |
4979
85.8 IPS |
|
|
Machine Translation (Q)
|
70% |
1799
33.7 IPS |