| User | Beamish |
| Upload Date | November 28 2025 09:48 PM |
| Views | 3 |
| AI Information | |
|---|---|
| Framework | TensorFlow Lite |
| Backend | NNAPI |
| Device | Samsung Exynos 2200 |
| System Information | |
|---|---|
| Operating System | Android 16 |
| Model | Samsung Galaxy S22 |
| Model ID | samsung SM-S901B |
| Motherboard | s5e9925 |
| Governor | energy_aware |
| CPU Information | |
|---|---|
| Name | ARM ARMv8 |
| Topology | 1 Processor, 8 Cores |
| Identifier | ARM implementer 65 architecture 8 variant 2 part 3400 revision 0 |
| Base Frequency | 1.82 GHz |
| Cluster 1 | 4 Cores @ 1.82 GHz |
| Cluster 2 | 3 Cores @ 2.52 GHz |
| Cluster 3 | 1 Core @ 2.80 GHz |
| Memory Information | |
|---|---|
| Size | 7.10 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
80
14.8 IPS |
|
|
Image Classification (HP)
|
100% |
101
18.8 IPS |
|
|
Image Classification (Q)
|
99% |
298
55.6 IPS |
|
|
Image Segmentation (SP)
|
100% |
137
2.23 IPS |
|
|
Image Segmentation (HP)
|
100% |
137
2.22 IPS |
|
|
Image Segmentation (Q)
|
98% |
315
5.12 IPS |
|
|
Pose Estimation (SP)
|
100% |
191
0.22 IPS |
|
|
Pose Estimation (HP)
|
100% |
192
0.22 IPS |
|
|
Pose Estimation (Q)
|
98% |
767
0.90 IPS |
|
|
Object Detection (SP)
|
100% |
104
8.22 IPS |
|
|
Object Detection (HP)
|
100% |
103
8.20 IPS |
|
|
Object Detection (Q)
|
87% |
325
26.1 IPS |
|
|
Face Detection (SP)
|
100% |
296
3.51 IPS |
|
|
Face Detection (HP)
|
100% |
298
3.54 IPS |
|
|
Face Detection (Q)
|
97% |
694
8.27 IPS |
|
|
Depth Estimation (SP)
|
100% |
244
1.88 IPS |
|
|
Depth Estimation (HP)
|
99% |
246
1.90 IPS |
|
|
Depth Estimation (Q)
|
64% |
610
5.53 IPS |
|
|
Style Transfer (SP)
|
100% |
434
0.56 IPS |
|
|
Style Transfer (HP)
|
100% |
435
0.56 IPS |
|
|
Style Transfer (Q)
|
98% |
1109
1.43 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
116
4.29 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
115
4.26 IPS |
|
|
Image Super-Resolution (Q)
|
97% |
445
16.5 IPS |
|
|
Text Classification (SP)
|
100% |
147
195.9 IPS |
|
|
Text Classification (HP)
|
100% |
147
196.4 IPS |
|
|
Text Classification (Q)
|
91% |
270
363.2 IPS |
|
|
Machine Translation (SP)
|
100% |
263
4.53 IPS |
|
|
Machine Translation (HP)
|
100% |
264
4.55 IPS |
|
|
Machine Translation (Q)
|
57% |
232
5.67 IPS |