| User | Beamish |
| Upload Date | November 28 2025 09:24 PM |
| Views | 6 |
| AI Information | |
|---|---|
| Framework | TensorFlow Lite |
| Backend | CPU |
| Device | Samsung Exynos 2200 |
| System Information | |
|---|---|
| Operating System | Android 16 |
| Model | Samsung Galaxy S22 |
| Model ID | samsung SM-S901B |
| Motherboard | s5e9925 |
| Governor | energy_aware |
| CPU Information | |
|---|---|
| Name | ARM ARMv8 |
| Topology | 1 Processor, 8 Cores |
| Identifier | ARM implementer 65 architecture 8 variant 2 part 3400 revision 0 |
| Base Frequency | 1.82 GHz |
| Cluster 1 | 4 Cores @ 1.82 GHz |
| Cluster 2 | 3 Cores @ 2.52 GHz |
| Cluster 3 | 1 Core @ 2.80 GHz |
| Memory Information | |
|---|---|
| Size | 7.10 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
1197
222.7 IPS |
|
|
Image Classification (HP)
|
100% |
1259
234.2 IPS |
|
|
Image Classification (Q)
|
100% |
1832
340.6 IPS |
|
|
Image Segmentation (SP)
|
100% |
1284
20.8 IPS |
|
|
Image Segmentation (HP)
|
100% |
1296
21.0 IPS |
|
|
Image Segmentation (Q)
|
98% |
2079
33.8 IPS |
|
|
Pose Estimation (SP)
|
100% |
2260
2.64 IPS |
|
|
Pose Estimation (HP)
|
100% |
2205
2.57 IPS |
|
|
Pose Estimation (Q)
|
84% |
4820
5.72 IPS |
|
|
Object Detection (SP)
|
98% |
1105
88.0 IPS |
|
|
Object Detection (HP)
|
98% |
1164
92.6 IPS |
|
|
Object Detection (Q)
|
83% |
1815
146.6 IPS |
|
|
Face Detection (SP)
|
100% |
2173
25.8 IPS |
|
|
Face Detection (HP)
|
100% |
2120
25.2 IPS |
|
|
Face Detection (Q)
|
95% |
3922
46.8 IPS |
|
|
Depth Estimation (SP)
|
99% |
2477
19.1 IPS |
|
|
Depth Estimation (HP)
|
99% |
2423
18.7 IPS |
|
|
Depth Estimation (Q)
|
64% |
3407
31.2 IPS |
|
|
Style Transfer (SP)
|
89% |
5014
6.51 IPS |
|
|
Style Transfer (HP)
|
89% |
4814
6.25 IPS |
|
|
Style Transfer (Q)
|
98% |
7871
10.1 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
1047
38.7 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
952
35.1 IPS |
|
|
Image Super-Resolution (Q)
|
97% |
2047
75.8 IPS |
|
|
Text Classification (SP)
|
100% |
386
515.7 IPS |
|
|
Text Classification (HP)
|
99% |
398
530.9 IPS |
|
|
Text Classification (Q)
|
88% |
729
983.3 IPS |
|
|
Machine Translation (SP)
|
100% |
862
14.8 IPS |
|
|
Machine Translation (HP)
|
100% |
814
14.0 IPS |
|
|
Machine Translation (Q)
|
50% |
411
14.6 IPS |