| Upload Date | November 27 2025 06:27 PM |
| Views | 2 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 5060 Laptop GPU |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | LENOVO 83JH |
| Motherboard | LENOVO LNVNB161216 |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | Intel Core i7-14700HX |
| Topology | 1 Processor, 20 Cores, 28 Threads |
| Identifier | GenuineIntel Family 6 Model 183 Stepping 1 |
| Base Frequency | 2.10 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 12 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
6904
1.28 KIPS |
|
|
Image Classification (HP)
|
100% |
12491
2.32 KIPS |
|
|
Image Classification (Q)
|
99% |
6084
1.13 KIPS |
|
|
Image Segmentation (SP)
|
100% |
12766
207.0 IPS |
|
|
Image Segmentation (HP)
|
100% |
18768
304.2 IPS |
|
|
Image Segmentation (Q)
|
98% |
11529
187.5 IPS |
|
|
Pose Estimation (SP)
|
100% |
81307
94.9 IPS |
|
|
Pose Estimation (HP)
|
100% |
249285
290.9 IPS |
|
|
Pose Estimation (Q)
|
96% |
73379
86.0 IPS |
|
|
Object Detection (SP)
|
100% |
7449
590.9 IPS |
|
|
Object Detection (HP)
|
100% |
17190
1.36 KIPS |
|
|
Object Detection (Q)
|
87% |
7690
617.1 IPS |
|
|
Face Detection (SP)
|
100% |
21802
259.1 IPS |
|
|
Face Detection (HP)
|
100% |
39487
469.2 IPS |
|
|
Face Detection (Q)
|
97% |
20875
248.9 IPS |
|
|
Depth Estimation (SP)
|
100% |
39810
306.7 IPS |
|
|
Depth Estimation (HP)
|
99% |
94229
726.0 IPS |
|
|
Depth Estimation (Q)
|
77% |
32806
262.3 IPS |
|
|
Style Transfer (SP)
|
100% |
128507
165.2 IPS |
|
|
Style Transfer (HP)
|
100% |
407856
524.3 IPS |
|
|
Style Transfer (Q)
|
98% |
109869
141.7 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
20528
758.0 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
48189
1.78 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
17278
639.8 IPS |
|
|
Text Classification (SP)
|
100% |
3221
4.30 KIPS |
|
|
Text Classification (HP)
|
100% |
3990
5.33 KIPS |
|
|
Text Classification (Q)
|
97% |
1912
2.56 KIPS |
|
|
Machine Translation (SP)
|
100% |
4574
78.8 IPS |
|
|
Machine Translation (HP)
|
100% |
5175
89.1 IPS |
|
|
Machine Translation (Q)
|
70% |
1936
36.3 IPS |