| User | fenom |
| Upload Date | November 26 2025 01:43 AM |
| Views | 9 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 3060 Laptop GPU |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Home (64-bit) |
| Model | Micro-Star International Co., Ltd. Katana GF66 11UE |
| Motherboard | Micro-Star International Co., Ltd. MS-1581 |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | Intel Core i7-11800H |
| Topology | 1 Processor, 8 Cores, 16 Threads |
| Identifier | GenuineIntel Family 6 Model 141 Stepping 1 |
| Base Frequency | 2.30 GHz |
| Cluster 1 | 8 Cores |
| Memory Information | |
|---|---|
| Size | 16.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
5510
1.02 KIPS |
|
|
Image Classification (HP)
|
99% |
9052
1.69 KIPS |
|
|
Image Classification (Q)
|
99% |
4270
796.4 IPS |
|
|
Image Segmentation (SP)
|
100% |
8400
136.2 IPS |
|
|
Image Segmentation (HP)
|
100% |
12948
209.9 IPS |
|
|
Image Segmentation (Q)
|
98% |
6731
109.4 IPS |
|
|
Pose Estimation (SP)
|
100% |
57042
66.6 IPS |
|
|
Pose Estimation (HP)
|
100% |
169930
198.3 IPS |
|
|
Pose Estimation (Q)
|
96% |
48092
56.3 IPS |
|
|
Object Detection (SP)
|
100% |
6654
527.8 IPS |
|
|
Object Detection (HP)
|
100% |
12779
1.01 KIPS |
|
|
Object Detection (Q)
|
85% |
5288
425.7 IPS |
|
|
Face Detection (SP)
|
100% |
16507
196.1 IPS |
|
|
Face Detection (HP)
|
100% |
27687
329.0 IPS |
|
|
Face Detection (Q)
|
97% |
11865
141.5 IPS |
|
|
Depth Estimation (SP)
|
100% |
30323
233.6 IPS |
|
|
Depth Estimation (HP)
|
99% |
65824
508.6 IPS |
|
|
Depth Estimation (Q)
|
77% |
21532
172.4 IPS |
|
|
Style Transfer (SP)
|
100% |
99854
128.4 IPS |
|
|
Style Transfer (HP)
|
100% |
267126
343.4 IPS |
|
|
Style Transfer (Q)
|
98% |
82119
105.9 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
18529
684.2 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
33647
1.24 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
12190
451.4 IPS |
|
|
Text Classification (SP)
|
100% |
2323
3.10 KIPS |
|
|
Text Classification (HP)
|
99% |
3002
4.01 KIPS |
|
|
Text Classification (Q)
|
97% |
1161
1.56 KIPS |
|
|
Machine Translation (SP)
|
100% |
3653
62.9 IPS |
|
|
Machine Translation (HP)
|
100% |
3680
63.4 IPS |
|
|
Machine Translation (Q)
|
70% |
1308
24.5 IPS |