| User | dd88 |
| Upload Date | November 20 2025 05:04 PM |
| Views | 4 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 5080 |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 (64-bit) |
| Model | Micro-Star International Co., Ltd. MS-7E34 |
| Motherboard | Micro-Star International Co., Ltd. PRO Z890-P WIFI (MS-7E34) |
| CPU Information | |
|---|---|
| Name | Intel Core Ultra 7 265K |
| Topology | 1 Processor, 20 Cores |
| Identifier | GenuineIntel Family 6 Model 198 Stepping 2 |
| Base Frequency | 3.90 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 12 Cores |
| Memory Information | |
|---|---|
| Size | 48.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
13870
2.58 KIPS |
|
|
Image Classification (HP)
|
100% |
21299
3.96 KIPS |
|
|
Image Classification (Q)
|
100% |
12356
2.30 KIPS |
|
|
Image Segmentation (SP)
|
100% |
28272
458.3 IPS |
|
|
Image Segmentation (HP)
|
100% |
40065
649.5 IPS |
|
|
Image Segmentation (Q)
|
98% |
25300
411.4 IPS |
|
|
Pose Estimation (SP)
|
100% |
236958
276.5 IPS |
|
|
Pose Estimation (HP)
|
100% |
727416
848.8 IPS |
|
|
Pose Estimation (Q)
|
96% |
199959
234.2 IPS |
|
|
Object Detection (SP)
|
100% |
18804
1.49 KIPS |
|
|
Object Detection (HP)
|
100% |
28147
2.23 KIPS |
|
|
Object Detection (Q)
|
86% |
15798
1.27 KIPS |
|
|
Face Detection (SP)
|
100% |
54314
645.4 IPS |
|
|
Face Detection (HP)
|
100% |
80007
950.7 IPS |
|
|
Face Detection (Q)
|
97% |
44994
536.5 IPS |
|
|
Depth Estimation (SP)
|
100% |
87399
673.4 IPS |
|
|
Depth Estimation (HP)
|
99% |
165882
1.28 KIPS |
|
|
Depth Estimation (Q)
|
78% |
66417
530.4 IPS |
|
|
Style Transfer (SP)
|
100% |
342225
439.9 IPS |
|
|
Style Transfer (HP)
|
100% |
1108845
1.43 KIPS |
|
|
Style Transfer (Q)
|
98% |
296270
382.0 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
53463
1.97 KIPS |
|
|
Image Super-Resolution (HP)
|
100% |
83517
3.08 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
41013
1.52 KIPS |
|
|
Text Classification (SP)
|
100% |
3961
5.29 KIPS |
|
|
Text Classification (HP)
|
100% |
4931
6.58 KIPS |
|
|
Text Classification (Q)
|
97% |
2370
3.18 KIPS |
|
|
Machine Translation (SP)
|
100% |
7112
122.5 IPS |
|
|
Machine Translation (HP)
|
100% |
7028
121.1 IPS |
|
|
Machine Translation (Q)
|
70% |
3087
57.9 IPS |