| Upload Date | November 18 2025 04:30 PM |
| Views | 2 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | CPU |
| Device | Intel(R) Core(TM) Ultra 9 275HX |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | SchenkerTechnologiesGmbH XMG NEO (E25) |
| Motherboard | NB02 X6AR5xxY |
| Power Plan | Ausbalanciert |
| CPU Information | |
|---|---|
| Name | Intel Core Ultra 9 275HX |
| Topology | 1 Processor, 24 Cores |
| Identifier | GenuineIntel Family 6 Model 198 Stepping 2 |
| Base Frequency | 2.70 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
5559
1.03 KIPS |
|
|
Image Classification (HP)
|
100% |
904
168.1 IPS |
|
|
Image Classification (Q)
|
99% |
9519
1.78 KIPS |
|
|
Image Segmentation (SP)
|
100% |
2631
42.7 IPS |
|
|
Image Segmentation (HP)
|
100% |
1571
25.5 IPS |
|
|
Image Segmentation (Q)
|
98% |
17361
282.3 IPS |
|
|
Pose Estimation (SP)
|
100% |
15311
17.9 IPS |
|
|
Pose Estimation (HP)
|
100% |
8313
9.70 IPS |
|
|
Pose Estimation (Q)
|
94% |
49358
57.9 IPS |
|
|
Object Detection (SP)
|
100% |
5384
427.0 IPS |
|
|
Object Detection (HP)
|
100% |
988
78.3 IPS |
|
|
Object Detection (Q)
|
86% |
11007
884.6 IPS |
|
|
Face Detection (SP)
|
100% |
15510
184.3 IPS |
|
|
Face Detection (HP)
|
100% |
2526
30.0 IPS |
|
|
Face Detection (Q)
|
97% |
13626
162.5 IPS |
|
|
Depth Estimation (SP)
|
100% |
15984
123.1 IPS |
|
|
Depth Estimation (HP)
|
99% |
3689
28.4 IPS |
|
|
Depth Estimation (Q)
|
78% |
23061
184.0 IPS |
|
|
Style Transfer (SP)
|
100% |
33143
42.6 IPS |
|
|
Style Transfer (HP)
|
100% |
20105
25.8 IPS |
|
|
Style Transfer (Q)
|
98% |
23762
30.6 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
5585
206.2 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
3721
137.4 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
6220
230.3 IPS |
|
|
Text Classification (SP)
|
100% |
1916
2.56 KIPS |
|
|
Text Classification (HP)
|
100% |
1077
1.44 KIPS |
|
|
Text Classification (Q)
|
97% |
1658
2.22 KIPS |
|
|
Machine Translation (SP)
|
100% |
3104
53.5 IPS |
|
|
Machine Translation (HP)
|
100% |
1494
25.7 IPS |
|
|
Machine Translation (Q)
|
65% |
4129
83.0 IPS |