| Upload Date | November 18 2025 07:53 AM |
| Views | 2 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | CPU |
| Device | Intel(R) Core(TM) Ultra 9 285H |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | Micro-Star International Co., Ltd. Prestige 16 AI Evo B2HMG |
| Motherboard | Micro-Star International Co., Ltd. MS-15A1 |
| CPU Information | |
|---|---|
| Name | Intel Core Ultra 9 285H |
| Topology | 1 Processor, 16 Cores |
| Identifier | GenuineIntel Family 6 Model 197 Stepping 2 |
| Base Frequency | 2.90 GHz |
| Cluster 1 | 6 Cores |
| Cluster 2 | 10 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
3580
665.8 IPS |
|
|
Image Classification (HP)
|
100% |
3963
737.0 IPS |
|
|
Image Classification (Q)
|
100% |
9226
1.72 KIPS |
|
|
Image Segmentation (SP)
|
100% |
4150
67.3 IPS |
|
|
Image Segmentation (HP)
|
100% |
2468
40.0 IPS |
|
|
Image Segmentation (Q)
|
99% |
9329
151.2 IPS |
|
|
Pose Estimation (SP)
|
100% |
7539
8.80 IPS |
|
|
Pose Estimation (HP)
|
100% |
6809
7.95 IPS |
|
|
Pose Estimation (Q)
|
96% |
26758
31.3 IPS |
|
|
Object Detection (SP)
|
100% |
3120
247.5 IPS |
|
|
Object Detection (HP)
|
100% |
3713
294.5 IPS |
|
|
Object Detection (Q)
|
88% |
9466
758.8 IPS |
|
|
Face Detection (SP)
|
100% |
8948
106.3 IPS |
|
|
Face Detection (HP)
|
100% |
10269
122.0 IPS |
|
|
Face Detection (Q)
|
100% |
17963
213.4 IPS |
|
|
Depth Estimation (SP)
|
100% |
7812
60.2 IPS |
|
|
Depth Estimation (HP)
|
99% |
8673
66.8 IPS |
|
|
Depth Estimation (Q)
|
89% |
22202
172.6 IPS |
|
|
Style Transfer (SP)
|
100% |
19591
25.2 IPS |
|
|
Style Transfer (HP)
|
100% |
19850
25.5 IPS |
|
|
Style Transfer (Q)
|
98% |
69261
89.3 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
3573
131.9 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
4325
159.7 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
14502
537.1 IPS |
|
|
Text Classification (SP)
|
100% |
3181
4.25 KIPS |
|
|
Text Classification (HP)
|
100% |
2751
3.67 KIPS |
|
|
Text Classification (Q)
|
92% |
5124
6.88 KIPS |
|
|
Machine Translation (SP)
|
100% |
3327
57.3 IPS |
|
|
Machine Translation (HP)
|
100% |
5196
89.5 IPS |
|
|
Machine Translation (Q)
|
100% |
3296
56.8 IPS |