| Upload Date | November 15 2025 04:48 PM |
| Views | 2 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | NPU |
| Device | Intel(R) AI Boost |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Enterprise LTSC (64-bit) |
| Model | SAMSUNG ELECTRONICS CO., LTD. 965XHD |
| Motherboard | SAMSUNG ELECTRONICS CO., LTD. NT965XHW-A71AR |
| CPU Information | |
|---|---|
| Name | Intel Core Ultra 7 255H |
| Topology | 1 Processor, 16 Cores |
| Identifier | GenuineIntel Family 6 Model 197 Stepping 2 |
| Base Frequency | 2.00 GHz |
| Cluster 1 | 6 Cores |
| Cluster 2 | 10 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
2923
543.5 IPS |
|
|
Image Classification (HP)
|
100% |
6890
1.28 KIPS |
|
|
Image Classification (Q)
|
100% |
9730
1.81 KIPS |
|
|
Image Segmentation (SP)
|
100% |
3804
61.7 IPS |
|
|
Image Segmentation (HP)
|
100% |
2792
45.3 IPS |
|
|
Image Segmentation (Q)
|
99% |
3565
57.8 IPS |
|
|
Pose Estimation (SP)
|
100% |
6203
7.24 IPS |
|
|
Pose Estimation (HP)
|
100% |
34939
40.8 IPS |
|
|
Pose Estimation (Q)
|
96% |
75674
88.6 IPS |
|
|
Object Detection (SP)
|
100% |
2639
209.3 IPS |
|
|
Object Detection (HP)
|
100% |
6076
481.9 IPS |
|
|
Object Detection (Q)
|
88% |
10281
824.3 IPS |
|
|
Face Detection (SP)
|
100% |
8353
99.3 IPS |
|
|
Face Detection (HP)
|
100% |
17803
211.5 IPS |
|
|
Face Detection (Q)
|
100% |
33415
397.0 IPS |
|
|
Depth Estimation (SP)
|
100% |
6967
53.7 IPS |
|
|
Depth Estimation (HP)
|
99% |
19733
152.0 IPS |
|
|
Depth Estimation (Q)
|
88% |
35920
279.5 IPS |
|
|
Style Transfer (SP)
|
100% |
17538
22.5 IPS |
|
|
Style Transfer (HP)
|
100% |
56279
72.3 IPS |
|
|
Style Transfer (Q)
|
98% |
100890
130.1 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
3275
120.9 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
16029
591.9 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
30638
1.13 KIPS |
|
|
Text Classification (SP)
|
100% |
3077
4.11 KIPS |
|
|
Text Classification (HP)
|
100% |
2004
2.67 KIPS |
|
|
Text Classification (Q)
|
92% |
2158
2.90 KIPS |
|
|
Machine Translation (SP)
|
100% |
2741
47.2 IPS |
|
|
Machine Translation (HP)
|
100% |
4229
72.8 IPS |
|
|
Machine Translation (Q)
|
100% |
4243
73.1 IPS |