| User | FrankenStryker |
| Upload Date | November 14 2025 08:58 AM |
| Views | 6 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | CPU |
| Device | Intel Core i5-1035G1 |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Home Single Language (64-bit) |
| Model | LENOVO 81WE |
| Motherboard | LENOVO LNVNB161216 |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | Intel Core i5-1035G1 |
| Topology | 1 Processor, 4 Cores, 8 Threads |
| Identifier | GenuineIntel Family 6 Model 126 Stepping 5 |
| Base Frequency | 1.19 GHz |
| Cluster 1 | 4 Cores |
| Memory Information | |
|---|---|
| Size | 8.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
1044
194.2 IPS |
|
|
Image Classification (HP)
|
100% |
272
50.5 IPS |
|
|
Image Classification (Q)
|
99% |
2642
492.7 IPS |
|
|
Image Segmentation (SP)
|
100% |
525
8.51 IPS |
|
|
Image Segmentation (HP)
|
100% |
360
5.84 IPS |
|
|
Image Segmentation (Q)
|
98% |
2640
42.9 IPS |
|
|
Pose Estimation (SP)
|
100% |
1309
1.53 IPS |
|
|
Pose Estimation (HP)
|
100% |
1210
1.41 IPS |
|
|
Pose Estimation (Q)
|
94% |
8073
9.47 IPS |
|
|
Object Detection (SP)
|
100% |
1002
79.5 IPS |
|
|
Object Detection (HP)
|
100% |
369
29.2 IPS |
|
|
Object Detection (Q)
|
86% |
3185
256.0 IPS |
|
|
Face Detection (SP)
|
100% |
1948
23.2 IPS |
|
|
Face Detection (HP)
|
100% |
756
8.98 IPS |
|
|
Face Detection (Q)
|
97% |
4262
50.8 IPS |
|
|
Depth Estimation (SP)
|
100% |
3361
25.9 IPS |
|
|
Depth Estimation (HP)
|
99% |
1214
9.35 IPS |
|
|
Depth Estimation (Q)
|
78% |
7294
58.2 IPS |
|
|
Style Transfer (SP)
|
100% |
4910
6.31 IPS |
|
|
Style Transfer (HP)
|
100% |
2685
3.45 IPS |
|
|
Style Transfer (Q)
|
98% |
7323
9.44 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
597
22.1 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
461
17.0 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
1947
72.1 IPS |
|
|
Text Classification (SP)
|
100% |
785
1.05 KIPS |
|
|
Text Classification (HP)
|
100% |
472
630.4 IPS |
|
|
Text Classification (Q)
|
97% |
828
1.11 KIPS |
|
|
Machine Translation (SP)
|
100% |
1064
18.3 IPS |
|
|
Machine Translation (HP)
|
100% |
418
7.21 IPS |
|
|
Machine Translation (Q)
|
65% |
1367
27.5 IPS |