| User | AdamOp |
| Upload Date | November 12 2025 02:07 PM |
| Views | 3 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | NPU |
| Device | Intel(R) AI Boost |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | HP HP EliteDesk 8 Mini G1i Desktop AI PC |
| Motherboard | HP 8D15 |
| Power Plan | HP Optimized (Modern Standby) |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 5 225T |
| Topology | 1 Processor, 10 Cores |
| Identifier | GenuineIntel Family 6 Model 198 Stepping 2 |
| Base Frequency | 2.50 GHz |
| Cluster 1 | 6 Cores |
| Cluster 2 | 4 Cores |
| Memory Information | |
|---|---|
| Size | 16.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
2700
502.2 IPS |
|
|
Image Classification (HP)
|
100% |
6621
1.23 KIPS |
|
|
Image Classification (Q)
|
100% |
9889
1.84 KIPS |
|
|
Image Segmentation (SP)
|
100% |
3065
49.7 IPS |
|
|
Image Segmentation (HP)
|
100% |
2746
44.5 IPS |
|
|
Image Segmentation (Q)
|
99% |
3737
60.6 IPS |
|
|
Pose Estimation (SP)
|
100% |
5060
5.90 IPS |
|
|
Pose Estimation (HP)
|
100% |
33491
39.1 IPS |
|
|
Pose Estimation (Q)
|
96% |
69145
81.0 IPS |
|
|
Object Detection (SP)
|
100% |
2474
196.2 IPS |
|
|
Object Detection (HP)
|
100% |
5286
419.3 IPS |
|
|
Object Detection (Q)
|
87% |
9284
745.1 IPS |
|
|
Face Detection (SP)
|
100% |
6012
71.4 IPS |
|
|
Face Detection (HP)
|
100% |
11746
139.6 IPS |
|
|
Face Detection (Q)
|
100% |
23848
283.4 IPS |
|
|
Depth Estimation (SP)
|
100% |
6364
49.0 IPS |
|
|
Depth Estimation (HP)
|
99% |
12123
93.4 IPS |
|
|
Depth Estimation (Q)
|
88% |
22600
175.8 IPS |
|
|
Style Transfer (SP)
|
100% |
14821
19.1 IPS |
|
|
Style Transfer (HP)
|
100% |
36311
46.7 IPS |
|
|
Style Transfer (Q)
|
98% |
67491
87.0 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
3160
116.7 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
13080
483.0 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
22046
816.5 IPS |
|
|
Text Classification (SP)
|
100% |
2771
3.70 KIPS |
|
|
Text Classification (HP)
|
100% |
2033
2.71 KIPS |
|
|
Text Classification (Q)
|
92% |
1957
2.63 KIPS |
|
|
Machine Translation (SP)
|
100% |
3962
68.2 IPS |
|
|
Machine Translation (HP)
|
100% |
3877
66.8 IPS |
|
|
Machine Translation (Q)
|
100% |
3913
67.4 IPS |