| User | slavatsarev |
| Upload Date | November 11 2025 03:20 PM |
| Views | 2 |
| AI Information | |
|---|---|
| Framework | TensorFlow Lite |
| Backend | NNAPI |
| Device | ARM ARMv8 |
| System Information | |
|---|---|
| Operating System | Android 15 |
| Model | HONOR LGE-NX9 |
| Model ID | HONOR LGE-NX9 |
| Motherboard | taro |
| Governor | walt |
| CPU Information | |
|---|---|
| Name | ARM ARMv8 |
| Topology | 1 Processor, 8 Cores |
| Identifier | ARM implementer 65 architecture 8 variant 2 part 3400 revision 0 |
| Base Frequency | 1.78 GHz |
| Cluster 1 | 4 Cores @ 1.79 GHz |
| Cluster 2 | 3 Cores @ 2.50 GHz |
| Cluster 3 | 1 Core @ 3.00 GHz |
| Memory Information | |
|---|---|
| Size | 7.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
192
35.7 IPS |
|
|
Image Classification (HP)
|
100% |
195
36.3 IPS |
|
|
Image Classification (Q)
|
99% |
542
101.2 IPS |
|
|
Image Segmentation (SP)
|
100% |
237
3.84 IPS |
|
|
Image Segmentation (HP)
|
100% |
241
3.91 IPS |
|
|
Image Segmentation (Q)
|
98% |
584
9.49 IPS |
|
|
Pose Estimation (SP)
|
100% |
280
0.33 IPS |
|
|
Pose Estimation (HP)
|
100% |
281
0.33 IPS |
|
|
Pose Estimation (Q)
|
98% |
1246
1.46 IPS |
|
|
Object Detection (SP)
|
100% |
167
13.3 IPS |
|
|
Object Detection (HP)
|
100% |
179
14.2 IPS |
|
|
Object Detection (Q)
|
87% |
576
46.2 IPS |
|
|
Face Detection (SP)
|
100% |
469
5.58 IPS |
|
|
Face Detection (HP)
|
100% |
472
5.61 IPS |
|
|
Face Detection (Q)
|
97% |
1228
14.6 IPS |
|
|
Depth Estimation (SP)
|
100% |
368
2.84 IPS |
|
|
Depth Estimation (HP)
|
99% |
371
2.85 IPS |
|
|
Depth Estimation (Q)
|
64% |
1035
9.39 IPS |
|
|
Style Transfer (SP)
|
100% |
650
0.84 IPS |
|
|
Style Transfer (HP)
|
100% |
642
0.83 IPS |
|
|
Style Transfer (Q)
|
98% |
1782
2.30 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
162
5.99 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
184
6.80 IPS |
|
|
Image Super-Resolution (Q)
|
97% |
695
25.8 IPS |
|
|
Text Classification (SP)
|
100% |
282
377.0 IPS |
|
|
Text Classification (HP)
|
100% |
289
385.9 IPS |
|
|
Text Classification (Q)
|
91% |
524
705.0 IPS |
|
|
Machine Translation (SP)
|
100% |
439
7.56 IPS |
|
|
Machine Translation (HP)
|
100% |
415
7.14 IPS |
|
|
Machine Translation (Q)
|
57% |
415
10.1 IPS |