| User | NVDA-Fomo |
| Upload Date | November 10 2025 09:55 PM |
| Views | 5 |
| AI Information | |
|---|---|
| Framework | TensorFlow Lite |
| Backend | CPU |
| Device | Qualcomm Snapdragon 8 Gen 1 |
| System Information | |
|---|---|
| Operating System | Android 16 |
| Model | Samsung Galaxy S22 Ultra |
| Model ID | samsung SM-S908W |
| Motherboard | taro |
| Governor | walt |
| CPU Information | |
|---|---|
| Name | ARM ARMv8 |
| Topology | 1 Processor, 8 Cores |
| Identifier | ARM implementer 65 architecture 8 variant 2 part 3400 revision 0 |
| Base Frequency | 1.78 GHz |
| Cluster 1 | 4 Cores @ 1.79 GHz |
| Cluster 2 | 3 Cores @ 2.50 GHz |
| Cluster 3 | 1 Core @ 3.00 GHz |
| Memory Information | |
|---|---|
| Size | 7.05 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
1341
249.3 IPS |
|
|
Image Classification (HP)
|
100% |
1335
248.2 IPS |
|
|
Image Classification (Q)
|
100% |
1920
357.0 IPS |
|
|
Image Segmentation (SP)
|
100% |
1385
22.5 IPS |
|
|
Image Segmentation (HP)
|
100% |
1377
22.3 IPS |
|
|
Image Segmentation (Q)
|
98% |
2107
34.3 IPS |
|
|
Pose Estimation (SP)
|
100% |
2355
2.75 IPS |
|
|
Pose Estimation (HP)
|
100% |
2290
2.67 IPS |
|
|
Pose Estimation (Q)
|
84% |
4804
5.70 IPS |
|
|
Object Detection (SP)
|
98% |
1219
97.0 IPS |
|
|
Object Detection (HP)
|
98% |
1212
96.5 IPS |
|
|
Object Detection (Q)
|
83% |
1754
141.7 IPS |
|
|
Face Detection (SP)
|
100% |
2310
27.5 IPS |
|
|
Face Detection (HP)
|
100% |
2284
27.1 IPS |
|
|
Face Detection (Q)
|
95% |
3896
46.5 IPS |
|
|
Depth Estimation (SP)
|
99% |
2461
19.0 IPS |
|
|
Depth Estimation (HP)
|
99% |
2527
19.5 IPS |
|
|
Depth Estimation (Q)
|
64% |
3954
36.2 IPS |
|
|
Style Transfer (SP)
|
89% |
5284
6.86 IPS |
|
|
Style Transfer (HP)
|
89% |
5179
6.72 IPS |
|
|
Style Transfer (Q)
|
98% |
10240
13.2 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
1178
43.5 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
1255
46.4 IPS |
|
|
Image Super-Resolution (Q)
|
97% |
2578
95.5 IPS |
|
|
Text Classification (SP)
|
100% |
583
778.3 IPS |
|
|
Text Classification (HP)
|
99% |
603
805.1 IPS |
|
|
Text Classification (Q)
|
88% |
965
1.30 KIPS |
|
|
Machine Translation (SP)
|
100% |
1358
23.4 IPS |
|
|
Machine Translation (HP)
|
100% |
1295
22.3 IPS |
|
|
Machine Translation (Q)
|
50% |
498
17.7 IPS |