| Upload Date | November 10 2025 02:00 AM |
| Views | 2 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | CPU |
| Device | Intel(R) Core(TM) Ultra 9 275HX |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 (64-bit) |
| Model | Micro-Star International Co., Ltd. Vector 17 HX AI A2XWJG |
| Motherboard | Micro-Star International Co., Ltd. MS-17S3 |
| CPU Information | |
|---|---|
| Name | Intel Core Ultra 9 275HX |
| Topology | 1 Processor, 24 Cores |
| Identifier | GenuineIntel Family 6 Model 198 Stepping 2 |
| Base Frequency | 2.70 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
5159
959.5 IPS |
|
|
Image Classification (HP)
|
100% |
5650
1.05 KIPS |
|
|
Image Classification (Q)
|
100% |
9428
1.75 KIPS |
|
|
Image Segmentation (SP)
|
100% |
6863
111.3 IPS |
|
|
Image Segmentation (HP)
|
100% |
4094
66.4 IPS |
|
|
Image Segmentation (Q)
|
99% |
11872
192.5 IPS |
|
|
Pose Estimation (SP)
|
100% |
11428
13.3 IPS |
|
|
Pose Estimation (HP)
|
100% |
10348
12.1 IPS |
|
|
Pose Estimation (Q)
|
96% |
27979
32.8 IPS |
|
|
Object Detection (SP)
|
100% |
4972
394.4 IPS |
|
|
Object Detection (HP)
|
100% |
5870
465.6 IPS |
|
|
Object Detection (Q)
|
88% |
10524
843.6 IPS |
|
|
Face Detection (SP)
|
100% |
14957
177.7 IPS |
|
|
Face Detection (HP)
|
100% |
17085
203.0 IPS |
|
|
Face Detection (Q)
|
100% |
27210
323.3 IPS |
|
|
Depth Estimation (SP)
|
100% |
12565
96.8 IPS |
|
|
Depth Estimation (HP)
|
99% |
13858
106.8 IPS |
|
|
Depth Estimation (Q)
|
89% |
27082
210.6 IPS |
|
|
Style Transfer (SP)
|
100% |
32391
41.6 IPS |
|
|
Style Transfer (HP)
|
100% |
24940
32.1 IPS |
|
|
Style Transfer (Q)
|
98% |
82687
106.6 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
6685
246.8 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
6830
252.2 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
15293
566.4 IPS |
|
|
Text Classification (SP)
|
100% |
3878
5.18 KIPS |
|
|
Text Classification (HP)
|
100% |
2997
4.00 KIPS |
|
|
Text Classification (Q)
|
92% |
6037
8.11 KIPS |
|
|
Machine Translation (SP)
|
100% |
3778
65.1 IPS |
|
|
Machine Translation (HP)
|
100% |
6887
118.6 IPS |
|
|
Machine Translation (Q)
|
100% |
3531
60.8 IPS |