| Upload Date | November 10 2025 01:58 AM |
| Views | 2 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 5090 Laptop GPU |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 (64-bit) |
| Model | Micro-Star International Co., Ltd. Vector 17 HX AI A2XWJG |
| Motherboard | Micro-Star International Co., Ltd. MS-17S3 |
| CPU Information | |
|---|---|
| Name | Intel Core Ultra 9 275HX |
| Topology | 1 Processor, 24 Cores |
| Identifier | GenuineIntel Family 6 Model 198 Stepping 2 |
| Base Frequency | 2.70 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
12496
2.32 KIPS |
|
|
Image Classification (HP)
|
100% |
19789
3.68 KIPS |
|
|
Image Classification (Q)
|
100% |
11179
2.08 KIPS |
|
|
Image Segmentation (SP)
|
100% |
24329
394.4 IPS |
|
|
Image Segmentation (HP)
|
100% |
34111
553.0 IPS |
|
|
Image Segmentation (Q)
|
98% |
21890
355.9 IPS |
|
|
Pose Estimation (SP)
|
100% |
196698
229.5 IPS |
|
|
Pose Estimation (HP)
|
100% |
625553
729.9 IPS |
|
|
Pose Estimation (Q)
|
96% |
165208
193.5 IPS |
|
|
Object Detection (SP)
|
100% |
16860
1.34 KIPS |
|
|
Object Detection (HP)
|
100% |
25393
2.01 KIPS |
|
|
Object Detection (Q)
|
86% |
14632
1.18 KIPS |
|
|
Face Detection (SP)
|
100% |
47244
561.4 IPS |
|
|
Face Detection (HP)
|
100% |
70013
831.9 IPS |
|
|
Face Detection (Q)
|
97% |
39864
475.3 IPS |
|
|
Depth Estimation (SP)
|
100% |
77521
597.2 IPS |
|
|
Depth Estimation (HP)
|
99% |
159592
1.23 KIPS |
|
|
Depth Estimation (Q)
|
78% |
59593
475.9 IPS |
|
|
Style Transfer (SP)
|
100% |
300411
386.2 IPS |
|
|
Style Transfer (HP)
|
100% |
945693
1.22 KIPS |
|
|
Style Transfer (Q)
|
98% |
258055
332.8 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
45894
1.69 KIPS |
|
|
Image Super-Resolution (HP)
|
100% |
78267
2.89 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
35723
1.32 KIPS |
|
|
Text Classification (SP)
|
100% |
3694
4.93 KIPS |
|
|
Text Classification (HP)
|
100% |
4742
6.33 KIPS |
|
|
Text Classification (Q)
|
97% |
2237
3.00 KIPS |
|
|
Machine Translation (SP)
|
100% |
6489
111.8 IPS |
|
|
Machine Translation (HP)
|
100% |
6435
110.9 IPS |
|
|
Machine Translation (Q)
|
70% |
2958
55.5 IPS |