| Upload Date | November 10 2025 01:57 AM |
| Views | 2 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | CPU |
| Device | Intel(R) Core(TM) Ultra 9 275HX |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 (64-bit) |
| Model | Micro-Star International Co., Ltd. Vector 17 HX AI A2XWJG |
| Motherboard | Micro-Star International Co., Ltd. MS-17S3 |
| CPU Information | |
|---|---|
| Name | Intel Core Ultra 9 275HX |
| Topology | 1 Processor, 24 Cores |
| Identifier | GenuineIntel Family 6 Model 198 Stepping 2 |
| Base Frequency | 2.70 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
4813
895.0 IPS |
|
|
Image Classification (HP)
|
100% |
814
151.3 IPS |
|
|
Image Classification (Q)
|
99% |
8383
1.56 KIPS |
|
|
Image Segmentation (SP)
|
100% |
2734
44.3 IPS |
|
|
Image Segmentation (HP)
|
100% |
1473
23.9 IPS |
|
|
Image Segmentation (Q)
|
98% |
14860
241.6 IPS |
|
|
Pose Estimation (SP)
|
100% |
11099
13.0 IPS |
|
|
Pose Estimation (HP)
|
100% |
6650
7.76 IPS |
|
|
Pose Estimation (Q)
|
94% |
40641
47.7 IPS |
|
|
Object Detection (SP)
|
100% |
4525
358.9 IPS |
|
|
Object Detection (HP)
|
100% |
1072
85.1 IPS |
|
|
Object Detection (Q)
|
86% |
10547
847.7 IPS |
|
|
Face Detection (SP)
|
100% |
13969
166.0 IPS |
|
|
Face Detection (HP)
|
100% |
2497
29.7 IPS |
|
|
Face Detection (Q)
|
97% |
12385
147.7 IPS |
|
|
Depth Estimation (SP)
|
100% |
14202
109.4 IPS |
|
|
Depth Estimation (HP)
|
99% |
3198
24.6 IPS |
|
|
Depth Estimation (Q)
|
78% |
21790
173.9 IPS |
|
|
Style Transfer (SP)
|
100% |
25873
33.3 IPS |
|
|
Style Transfer (HP)
|
100% |
17860
23.0 IPS |
|
|
Style Transfer (Q)
|
98% |
27001
34.8 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
4464
164.8 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
3026
111.7 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
6600
244.4 IPS |
|
|
Text Classification (SP)
|
100% |
1691
2.26 KIPS |
|
|
Text Classification (HP)
|
100% |
986
1.32 KIPS |
|
|
Text Classification (Q)
|
97% |
1510
2.02 KIPS |
|
|
Machine Translation (SP)
|
100% |
2941
50.7 IPS |
|
|
Machine Translation (HP)
|
100% |
1373
23.6 IPS |
|
|
Machine Translation (Q)
|
65% |
3936
79.1 IPS |