| User | softmac |
| Upload Date | November 06 2025 10:09 AM |
| Views | 2 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 5070 Laptop GPU |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Enterprise (64-bit) |
| Model | Alienware Alienware 16X Aurora AC16251 |
| Motherboard | Alienware 0P9T4R |
| Power Plan | High performance |
| CPU Information | |
|---|---|
| Name | Intel Core Ultra 9 275HX |
| Topology | 1 Processor, 24 Cores |
| Identifier | GenuineIntel Family 6 Model 198 Stepping 2 |
| Base Frequency | 2.70 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
8901
1.66 KIPS |
|
|
Image Classification (HP)
|
100% |
16388
3.05 KIPS |
|
|
Image Classification (Q)
|
100% |
8261
1.54 KIPS |
|
|
Image Segmentation (SP)
|
100% |
17427
282.5 IPS |
|
|
Image Segmentation (HP)
|
100% |
26205
424.8 IPS |
|
|
Image Segmentation (Q)
|
98% |
16024
260.6 IPS |
|
|
Pose Estimation (SP)
|
100% |
120096
140.1 IPS |
|
|
Pose Estimation (HP)
|
100% |
379256
442.5 IPS |
|
|
Pose Estimation (Q)
|
96% |
111775
130.9 IPS |
|
|
Object Detection (SP)
|
100% |
10868
862.1 IPS |
|
|
Object Detection (HP)
|
100% |
19658
1.56 KIPS |
|
|
Object Detection (Q)
|
83% |
9523
769.4 IPS |
|
|
Face Detection (SP)
|
100% |
29381
349.1 IPS |
|
|
Face Detection (HP)
|
100% |
48423
575.4 IPS |
|
|
Face Detection (Q)
|
97% |
25476
303.8 IPS |
|
|
Depth Estimation (SP)
|
100% |
53155
409.5 IPS |
|
|
Depth Estimation (HP)
|
99% |
112247
864.8 IPS |
|
|
Depth Estimation (Q)
|
78% |
43361
346.1 IPS |
|
|
Style Transfer (SP)
|
100% |
166510
214.1 IPS |
|
|
Style Transfer (HP)
|
100% |
568752
731.1 IPS |
|
|
Style Transfer (Q)
|
98% |
145201
187.2 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
31686
1.17 KIPS |
|
|
Image Super-Resolution (HP)
|
100% |
61660
2.28 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
24482
906.5 IPS |
|
|
Text Classification (SP)
|
100% |
3622
4.83 KIPS |
|
|
Text Classification (HP)
|
100% |
4500
6.01 KIPS |
|
|
Text Classification (Q)
|
97% |
2159
2.89 KIPS |
|
|
Machine Translation (SP)
|
100% |
5140
88.5 IPS |
|
|
Machine Translation (HP)
|
100% |
5857
100.9 IPS |
|
|
Machine Translation (Q)
|
70% |
2040
38.3 IPS |